NASA's Space Launch System Booster Passes Major Ground Test | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Fri, Mar 13, 2015

NASA's Space Launch System Booster Passes Major Ground Test

Rocket Fired For Two Minutes, Produced 3.6 Million Pounds Of Thrust

The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations.

The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK, and is one of two tests planned to qualify the booster for flight. Once qualified, the flight booster hardware will be ready for shipment to NASA’s Kennedy Space Center in Florida for the first SLS flight.

"The work being done around the country today to build SLS is laying a solid foundation for future exploration missions, and these missions will enable us to pioneer far into the solar system," said William Gerstenmaier, NASA’s associate administrator for human exploration and operations. "The teams are doing tremendous work to develop what will be a national asset for human exploration and potential science missions."

It took months to heat the 1.6 million pound booster to 90 degrees Fahrenheit to verify its performance at the highest end of the booster’s accepted propellant temperature range. A cold-temperature test, at a target of 40 degrees Fahrenheit, the low end of the propellant temperature range, is planned for early 2016. These two tests will provide a full range of data for analytical models that inform how the booster performs. During the test, temperatures inside the booster reached more than 5,600 degrees.

"This test is a significant milestone for SLS and follows years of development," said Todd May, SLS program manager. "Our partnership with Orbital ATK and more than 500 suppliers across the country is keeping us on the path to building the most powerful rocket in the world."

During the test, more than 531 instrumentation channels on the booster were measured to help assess some 102 design objectives. The test also demonstrated the booster meets applicable ballistic performance requirements, such as thrust and pressure. Other objectives included data gathering on vital motor upgrades, such as the new internal motor insulation and liner and an improved nozzle design.

When completed, two five-segment boosters and four RS-25 main engines will power the SLS on deep space missions. The 177-feet-long solid rocket boosters operate in parallel with the main engines for the first two minutes of flight. They provide more than 75 percent of the thrust needed for the rocket to escape the gravitational pull of the Earth.

The first flight test of SLS will be configured for a 77-ton lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. The SLS will later be configured to provide an unprecedented lift capability of 143 tons to enable missions farther into our solar system.

(Images provided by NASA)

FMI: www.nasa.gov/sls

Advertisement

More News

ANN's Daily Aero-Term (05.09.24): Hold Procedure

Hold Procedure A predetermined maneuver which keeps aircraft within a specified airspace while awaiting further clearance from air traffic control. Also used during ground operatio>[...]

ANN's Daily Aero-Term (05.06.24): Altitude Readout

Altitude Readout An aircraft’s altitude, transmitted via the Mode C transponder feature, that is visually displayed in 100-foot increments on a radar scope having readout cap>[...]

ANN's Daily Aero-Linx (05.06.24)

Aero Linx: European Hang Gliding and Paragliding Union (EHPU) The general aim of the EHPU is to promote and protect hang gliding and paragliding in Europe. In order to achieve this>[...]

Airborne-NextGen 05.07.24: AI-Piloted F-16, AgEagle, 1st 2 WorldView Sats

Also: Skydio Chief, Uncle Sam Sues, Dash 7 magniX, OR UAS Accelerator US Secretary of the Air Force Frank Kendall was given a turn around the patch in the 'X-62A Variable In-flight>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC