NASA Research Could Reshape Understanding Of How Planets Form | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-Unlimited-04.23.24

Airborne-Unlimited-04.24.24 Airborne-FltTraining-04.25.24

Airborne-Unlimited-04.26.24

Thu, Aug 16, 2018

NASA Research Could Reshape Understanding Of How Planets Form

Scientists Identify Meteorite With Earth-Like Chemicals Dating Back To The Earliest Days Of The Solar System

Researchers have identified a new type of meteorite with the potential to reshape our understanding of planetary formation.

A new paper from scientists at the Astromaterials Research and Exploration Science Division (ARES) at NASA's Johnson Space Center in Houston, Texas, show that the meteorite has an Earth-like chemical composition and mineralogy that dates back to the earliest days of solar system formation. They also confirmed that this meteorite is the oldest igneous variety ever cataloged.

"This discovery upends the classical view of volcanic evolution," said Francis McCubbin, planetary researcher and astromaterials curator in ARES. "Andesites, the Earth equivalent of this rock, evolved through extensive geological processes that are largely thought to be unique to Earth. The fact that this meteorite, which is also a rock, formed within 2.5-million years of the formation of the solar system indicates that there are previously unrecognized mechanisms to expedite the chemical formation of evolved volcanic rock."

The research provides evidence that chemically evolved crustal rocks, the type that make up the surface of the Earth, were forming on tiny planets called planetesimals within the first 2.5-million years of solar system formation -- long before the formation of terrestrial planets like Earth, Mars and Venus. This shows that even in the earliest stages of the solar system, rocks that would go on to have the building blocks of life were beginning to evolve.

"On Earth, andesites typically form from magmas with elevated abundances of water, however the results of our study indicate that water may not be needed to form silica-rich volcanic rocks like andesites," McCubbin said. "The presence of evolved rocks on other celestial bodies provides valuable insights into how to -- and how not to -- identify potentially habitable bodies within our Solar System and beyond."

This research reshapes the way that habitable planets are identified because it goes against the idea that all silica-rich rocks contain water, and therefore the keys to habitability. Since the silica-rich meteorite in the study likely formed without the presence of liquid water, searching for bodies in the universe that have silica-rich rocks as a way to define habitability may no longer work.

The research, titled "Silica-rich volcanism in the Early Solar System Dated at 4.565 Ga," was published earlier this month in the journal Nature Communications. The lead author of the study, Poorna Srinivasan, completed the research during an internship in ARES, which is responsible for curation and scientific research coordination for all NASA extraterrestrial samples.

Srinivasan was guided in her research by McCubbin and NASA Apollo lunar sample curator Ryan Zeigler. Their combined analysis revealed high levels of tridymite, a mineral that had never been discovered so abundantly off-planet, which led to the study's key findings.

The publication was completed in collaboration between NASA Johnson, The University of New Mexico, and Arizona State University.

(Source: NASA news release)

FMI: www.nasa.gov

Advertisement

More News

Unfortunate... ANN/SportPlane Resource Guide Adds To Cautionary Advisories

The Industry Continues to be Rocked By Some Questionable Operations Recent investigations and a great deal of data has resulted in ANN’s SportPlane Resource Guide’s rep>[...]

ANN FAQ: Turn On Post Notifications

Make Sure You NEVER Miss A New Story From Aero-News Network Do you ever feel like you never see posts from a certain person or page on Facebook or Instagram? Here’s how you c>[...]

ANN's Daily Aero-Term (04.29.24): Visual Approach Slope Indicator (VASI)

Visual Approach Slope Indicator (VASI) An airport lighting facility providing vertical visual approach slope guidance to aircraft during approach to landing by radiating a directio>[...]

ANN's Daily Aero-Term (04.28.24): Airport Marking Aids

Airport Marking Aids Markings used on runway and taxiway surfaces to identify a specific runway, a runway threshold, a centerline, a hold line, etc. A runway should be marked in ac>[...]

ANN's Daily Aero-Linx (04.28.24)

Aero Linx: The Skyhawk Association The Skyhawk Association is a non-profit organization founded by former Skyhawk Pilots which is open to anyone with an affinity for the A-4 Skyhaw>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC