Cormorant UAV Completes First Fully Autonomous Pattern Flight Over Terrain | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-07.07.25

Airborne-NextGen-07.08.25

AirborneUnlimited-07.09.25

Airborne-AffordableFlyers-06.26.25

AirborneUnlimited-06.27.25

Thu, Nov 17, 2016

Cormorant UAV Completes First Fully Autonomous Pattern Flight Over Terrain

Marks Milestone In Urban Aeronautics 'Fancraft' Technology

Urban Aeronautics has announced that on November 3, 2016 its Cormorant Unmanned Air vehicle (UAV) prototype has performed its first autonomous pattern flight including low flight over uneven terrain.

While pattern flights are routine for conventional fixed wing aircraft and rotorcraft, it is a significant milestone in the evolution of an entirely new family of Urban’s proprietary technology aircraft known as Fancraft. Unlike other (manned and unmanned) aircraft, the Cormorant's autopilot relies primarily on inertial and ground reference, which is more complex than flying through open, unobstructed airspace. This industry-first event begins to demonstrate the Cormorant’s capability to operate close to the ground and inside obstructed terrain, in environments previously inaccessible to existing aircraft (having similar payload).

"This flight paves the way forward for the immediate evolution of Cormorant from prototype to near-term production and ultimately commercialization of this groundbreaking technology - for broad applications and markets," said Urban Aeronautics founder and entrepreneur Rafi Yoeli. "This is the most exciting time in the Company’s history and we look forward to accelerating our progress now that the technology is fully proven.”

Building on the success of this first pattern flight, upcoming flights will test ongoing development to improve the smoothness of transitions through the various flight modes (takeoff, climb, acceleration, cruise, deceleration, descent, turns, hover and touchdown), in addition to increasing speed and maneuverability.

Data from numerous sensors including two laser altimeters, a radar altimeter, inertial sensors, and an electro-optic payload camera are the foundation of the Flight Control System (FCS). In the future, obstacle avoidance sensors will also be installed. Based on the integrated data collected from the various sensor inputs, the Flight Management System (FMS) must "make a judgment" whether any momentary erroneous or inaccurate data from any individual sensor will or will not cause large deviations from the flight path. This amounts to a split second decision on whether to continue the mission, return home or make an immediate landing until further instructions. The challenge in designing and testing an FMS for a configuration that is has never been addressed by standard flight control algorithms, is analogous to a novice pilot attempting to fly for the first time with an understanding of basic aerodynamic principles but no instructor.

(Images provided with Urban Aeronautics news release)

FMI: www.urbanaero.com, Video

Advertisement

More News

Airborne 07.02.25: TikToker Arrested, Vietnam A/L Ground Hit, ATC Modernization

Also: Outlaw Prop 4 Mooney, Ready 4 Duty, Ukrainian F-16 Pilot Lost, Blue Origin Flt On his journey to become the first pilot to land solo on all seven continents, 19-year-old Etha>[...]

Airborne Affordable Flyers 07.03.25: Sonex HW, BlackShape Gabriel, PRA Fly-In 25

Also: DarkAero Update, Electric Aircraft Symposium, Updated Instructor Guide, OSH Homebuilts Celebrate The long-awaited Sonex High Wing prototype has flown... the Sonex gang tells >[...]

ANN's Daily Aero-Term (07.07.25): Discrete Code

Discrete Code As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; >[...]

Classic Aero-TV: DeltaHawk Aero Engine Defies Convention

From 2023 (YouTube Edition): Deviation from the Historical Mean Racine, Wisconsin-based DeltaHawk is a privately-held manufacturer of reciprocating engines for aircraft and hybrid >[...]

ANN's Daily Aero-Linx (07.07.25)

Aero Linx: Formation and Safety Team (F.A.S.T.), USA The Formation and Safety Team (FAST) is a worldwide, educational organization dedicated to teaching safe formation flying in Wa>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC