Lancets Project Probes Supersonic Shockwaves | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Sun, Jan 25, 2009

Lancets Project Probes Supersonic Shockwaves

Program Aims To Quiet Supersonic Transition

NASA is concluding a series of flight tests to measure shock waves generated by an F-15 jet, in an effort to validate computer models that could be used in designing quieter supersonic aircraft.

The Lift and Nozzle Change Effects on Tail Shock, or Lancets, project embodies research aimed at enabling the development of commercial aircraft that can fly faster than the speed of sound without generating annoying sonic booms over land. Supersonic flight over land generally is prohibited because of annoyances caused by such noise.

A sonic boom is created by shock waves that form on the front and rear of the aircraft. The boom loudness is related to the strength of the shock waves. The formation of the shock waves is dependent on the aircraft geometry and the way in which the wing generates lift.

During the flight tests at NASA's Dryden Flight Research Center in Edwards, CA, one of two F-15s generally followed 100 feet to 500 feet below and behind the other, measuring the strength of the leading aircraft's shock waves at various distances with special instruments. Global Positioning System relative positioning was used to guide the pilot of the probing aircraft to the test position and for accurate reporting of measurement locations.

Lancets is the latest in a series of NASA projects investigating the effects of aircraft geometry and lift on the strength of shock waves. NASA previously teamed with private companies to study the effect of aircraft shape on the strength of shock waves and whether adding a nose spike to an aircraft affects the strength of its shock waves in order to validate design tools for aircraft fore-bodies.

NASA's modified NF-15B was the test aircraft for the flights. It was ideally suited for Lancets because its canards and engine nozzles can be adjusted in flight.

Canards are small airfoils in front of the wing that are designed to increase the aircraft's performance. Adjusting the canards changes the lift of the main wing, which varies how much wing lift contributes to the strength of the shock waves. This cannot be done on a conventional aircraft without making expensive modifications to the wing. Adjusting the engine nozzles alters the exhaust plumes from the engines, which varies how much the rear of the aircraft contributes to the strength of the shock waves.

A second NASA F-15B was the probing aircraft. It was fitted with a special nose spike for taking shock strength measurements.

The flight results will be used by computational fluid dynamics researchers at NASA's Langley Research Center in Hampton, VA; NASA's Ames Research Center at Moffett Field, CA; and at Dryden to develop and validate improved tools that incorporate aft-shockwave effects in the prediction of sonic booms. The flight data will also be made available to interested university and industry partners in order to further their research objectives.

The research is funded and managed by the Fundamental Aeronautics Program, part of NASA's Aeronautics Research Mission Directorate at NASA Headquarters in Washington.

FMI: www.aeronautics.nasa.gov

Advertisement

More News

Airborne-Flight Training 05.09.24: ERAU at AIAA, LIFT Diamond Buy, Epic A&P

Also: Vertical Flight Society, NBAA Maintenance Conference, GA Honored, AMT Scholarship For the first time, students from Embry-Riddle’s Daytona Beach, Florida, campus took t>[...]

ANN's Daily Aero-Term (05.07.24): Hazardous Weather Information

Hazardous Weather Information Summary of significant meteorological information (SIGMET/WS), convective significant meteorological information (convective SIGMET/WST), urgent pilot>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

NTSB Final Report: Cessna 150

(FAA) Inspector Observed That Both Fuel Tanks Were Intact And That Only A Minimal Amount Of Fuel Remained In Each Analysis: According to the pilot, approximately 8 miles from the d>[...]

Aero-News: Quote of the Day (05.08.24)

“Pyka’s Pelican Cargo is unlike any other UAS solution on the market for contested logistics. We assessed a number of leading capabilities and concluded that the Pelica>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC