Hurricane-Tracking Small Satellites Set To Launch | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.05.25

Airborne-NextGen-05.06.25

AirborneUnlimited-05.07.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Sun, Nov 20, 2016

Hurricane-Tracking Small Satellites Set To Launch

CYGNSS Mission Expected To Lead To More Accurate Forecasts

NASA is set to launch its first Earth science small satellite constellation, which will help improve hurricane intensity, track, and storm surge forecasts, on Dec. 12 from Cape Canaveral Air Force Station in Florida.

The Cyclone Global Navigation Satellite System (CYGNSS) hurricane mission will measure previously unknown details crucial to accurately understanding the formation and intensity of tropical cyclones and hurricanes.

"This is a first-of-its-kind mission," said Thomas Zurbuchen, associate administrator for NASA's Science Mission Directorate at the agency's headquarters in Washington. "As a constellation of eight spacecraft, CYGNSS will do what a single craft can't in terms of measuring surface wind speeds inside hurricanes and tropical cyclones at high time-resolution, to improve our ability to understand and predict how these deadly storms develop."

The CYGNSS mission is expected to lead to more accurate weather forecasts of wind speeds and storm surges -- the walls of water that do the most damage when hurricanes make landfall.

Utilizing the same GPS technology that allows drivers to navigate streets, CYGNSS will use a constellation of eight microsatellite observatories to measure the surface roughness of the world's oceans. Mission scientists will use the data collected to calculate surface wind speeds, providing a better picture of a storm's strength and intensity.

Unlike existing operational weather satellites, CYGNSS can penetrate the heavy rain of a hurricane's eyewall to gather data about a storm's intense inner core. The eyewall is the thick ring of thunderstorm clouds and rain that surrounds the calm eye of a hurricane. The inner core region acts like the engine of the storm by extracting energy from the warm surface water via evaporation into the atmosphere. The latent heat contained in the water vapor is then released into the atmosphere by condensation and precipitation. The intense rain in eyewalls blocks the view of the inner core by conventional satellites, however, preventing scientists from gathering much information about this key region of a developing hurricane.

"Today, we can't see what's happening under the rain," said Chris Ruf, professor in the University of Michigan's Department of Climate and Space Sciences and Engineering and principal investigator for the CYGNSS mission. "We can measure the wind outside of the storm cell with present systems. But there's a gap in our knowledge of cyclone processes in the critical eyewall region of the storm – a gap that will be filled by the CYGNSS data. The models try to predict what is happening under the rain, but they are much less accurate without continuous experimental validation."

The CYGNSS small satellite observatories will continuously monitor surface winds over the oceans across Earth's tropical hurricane-belt latitudes. Each satellite is capable of capturing four wind measurements per second, adding as much as 32 wind measurements per second for the entire constellation.

CYGNSS is the first complete orbital mission competitively selected by NASA's Earth Venture program. Earth Venture focuses on low-cost, rapidly developed, science-driven missions to enhance our understanding of the current state of Earth and its complex, dynamic system and enable continual improvement in the prediction of future changes.

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas, and its Climate and Space Sciences and Engineering department leads the science investigation. The Earth Science Division of NASA's Science Mission Directorate oversees the mission.

(Image provided with NASA news release)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (05.07.25): Terminal Radar Service Area

Terminal Radar Service Area Airspace surrounding designated airports wherein ATC provides radar vectoring, sequencing, and separation on a full-time basis for all IFR and participa>[...]

ANN's Daily Aero-Linx (05.07.25)

Aero Linx: Utah Back Country Pilots Association (UBCP) Through the sharing experiences, the UBCP has built upon a foundation of safe operating practices in some of the most challen>[...]

Classic Aero-TV: Anousheh Ansari -- The Woman Behind The Prize

From 2010 (YouTube Edition): Imagine... Be The Change... Inspire FROM 2010: One of the more unusual phone calls I have ever received occurred a few years ago... from Anousheh Ansar>[...]

NTSB Prelim: Bell 206B

(Pilot) Felt A Shudder And Heard The Engine Sounding Differently, Followed By The Engine Chip Detector Light On April 14, 2025, about 1800 Pacific daylight time, a Bell 206B, N1667>[...]

Airborne-NextGen 05.06.25: AF Uncrewed Fighters, Drones v Planes, Joby Crew Test

Also: AMA Names Tyler Dobbs, More Falcon 9 Ops, Firefly Launch Unsuccessful, Autonomous F-16s The Air Force has begun ground testing a future uncrewed jet design in a milestone tow>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC