NASA Develops Light Microscope For International Space Station | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-07.07.25

Airborne-NextGen-07.08.25

AirborneUnlimited-07.09.25

Airborne-FlightTraining-07.10.25

AirborneUnlimited-07.11.25

Fri, Mar 11, 2011

NASA Develops Light Microscope For International Space Station

Allows Analysis Of Samples On ISS Rather Than Returning Them To Earth

NASA began testing a new multi-capability microscope this week on the International Space Station. It will help scientists study the effects of the space environment on physics and biology aboard the orbiting laboratory. The microscope is isolated from vibrations on the station, allowing it to obtain clear, high-resolution images. Using high-resolution magnification, scientists can examine microorganisms and individual cells of plants and animals, including humans.

The microscope will allow real-time study of the effects of the space environment without the need to return samples to Earth. Any living specimens returned to Earth must endure the effects of re-entry through the atmosphere. The ability to use the Light Microscopy Module (LMM) on station will enable scientists to study data unaffected by re-entry.

"We really need to maximize life science investigations conducted on the International Space Station," said Jacob Cohen, principal investigator of the technology demonstration and a researcher at NASA's Ames Research Center, Moffett Field, CA. "It's really amazing to be able to remotely manage, optimize and troubleshoot experiments observed with a microscope in space without the need to return the samples back to Earth. This microscope is helping fulfill the vision of a true laboratory in space."

The biological samples for the LMM launched on space shuttle Discovery's STS-133 mission on Feb. 24. They include eight fixed slides containing yeast; bacteria; a leaf; a fly; a butterfly wing; tissue sections and blood; six containers of live C. elegans worms, an organism biologists commonly study; a typed letter "r" and a piece of fluorescent plastic. The wing is from a previous study, Butterflies in Space, involving students from around the country, and flown on STS-129 in 2009. Some of the worms are descendants of those that survived the space shuttle Columbia (STS-107) accident; and others are modified to fluoresce. Scientists commonly attach green, yellow and red florescent proteins to study gene expression.

"Operating the LMM on the space station has been a goal of NASA's Life and Physical Sciences Program for many years," said Ron Sicker, LMM project manager at NASA's Glenn Research Center in Cleveland. "Scientists and engineers at Glenn modified the commercial microscope in the LMM with 23 micro motors and cameras to allow remote control operations."

Cohen and Sicker expect the LMM to perform the same as a microscope on Earth. In the future, the microscope could be used to assist in maintenance of station crew health, advance our knowledge of the effects of space on biology and contribute to the development of applications for space exploration and on Earth. This technology demonstration was developed by Ames and Glenn, which developed and manages the LMM. The Advanced Capabilities Division in the Exploration Systems Mission Directorate at NASA Headquarters in Washington, funds the project.

"This is a facility to support research in both physical and life sciences by NASA-funded and National Laboratory users," said Julie Robinson, International Space Station Program scientist at NASA's Johnson Space Center in Houston. "It gives us a capability not available before that allows more types of research to be done."

FMI: http://issresearchproject.grc.nasa.gov/Investigations/LMM

Advertisement

More News

NTSB Final Report: Aviat A1

Airplane Bounced About 3 Ft Then Touched Back Down And Then, With No Brakes Applied, The Airplane Began Veering To The Left Analysis: The pilot entered the airport traffic pattern >[...]

ANN's Daily Aero-Linx (07.08.25)

Aero Linx: British Microlight Aircraft Association (BMAA) The primary focus within all aviation activity is SAFETY. In all aspects of our sport SAFETY must come first, whether it b>[...]

Classic Aero-TV: Fly Corvair’s Reliable Engine Alternative

From SnF25 (YouTube Edition): William Wynne Builds Practical Aircraft Engines on the Corvair Platform Seeking an affordable alternative to the traditional aircraft engine options, >[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

Classic Aero-TV: CiES Fuel-Quantity and e-Throttle Systems Praised

From 2023 (YouTube Edition): Bridge of CiES CiES Inc. is a Bend, Oregon-based designer and manufacturer of modular embedded aircraft systems and sensors. The company’s fuel-l>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC