NASA Looks To 3D Printing To Improve Aircraft Icing Research Tools | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-09.16.24

Airborne-NextGen-09.17.24

Airborne-Unlimited-09.18.24

Airborne-FlightTraining-09.19.24

Airborne-Unlimited-09.13.24

Sat, Aug 24, 2019

NASA Looks To 3D Printing To Improve Aircraft Icing Research Tools

Cooperative Research Conducted By NASA, The FAA, ONERA And Others

NASA’s aeronautical innovators are using the most modern research tools available, including 3D printing, to generate new data that will help airplane makers and operators more efficiently deal with one of aviation’s oldest safety challenges – namely, icing.

That data, which will be publicly available in 2020, is the result of a cooperative five-year research program that involved NASA, the FAA, The French Aerospace Lab (ONERA), and several U.S. universities. “The aviation community has studied icing since before World War II, but thanks to the new tools we have access to we’re still learning new things that can help industry,” said Andy Broeren, an icing engineer at NASA’s Glenn Research Center (GRC) in Cleveland.

The key to this new set of data, which offers a better understanding of ice formation and its effects on an airplane, is the advent of using 3D printing as a research tool.

Historically, icing research has relied on generating real ice in a specially equipped wind tunnel that blows supercold water droplets over an airplane surface – often a wing – which then freezes on contact. Under these controlled conditions the resulting ice shapes closely match those formed in nature, but the methods used for documenting and analyzing those shapes have been relatively simple. “Our most common method was to cut a slice in the ice using a heated metal plate and insert a piece of cardboard into it, then trace the outline of the ice shape with a pencil,” Broeren said.

Measurements of those tracings provided some of the data used in computer codes that run simulations to learn more about and predict the effects of various ice shapes on the aerodynamics of an airplane. However, because those tracings were fairly basic in their construction, the fine details of the ice shape were lost, which meant the resulting computer code didn’t fully represent what was happening in the sky for real.

Researchers through the years have attempted to artificially produce and measure more complex shapes through classic model-making methods that involve use of molds and castings. Those models would then be attached to aircraft surfaces and tested in wind tunnels. With the availability of ever-more-sophisticated 3D printing, and the ability to scan objects to build and manipulate a 3D model in a computer, icing research has entered a new era of productivity. “When we started this project, we didn’t have a really good capability to measure the ice in three dimensions and do a high-fidelity 3D printer rendition of it,” Broeren said. “Now, we do.”

Aircraft manufacturers should benefit the most from results obtained by this more modern way of acquiring data on ice shapes, Broeren said. For example, the FAA requires airplane makers to include a certain amount of extra margin for safety in its aircraft designs in case of ice. That margin is based on icing research data that goes back many years. “If we can improve our understanding of how ice forms and affects aircraft in flight, that higher fidelity data could help us in several important ways,” Broeren said.

They include:

  • Improving the validity of computer simulation tools that help predict ice formation.
  • Enabling the FAA to adjust its requirements for certifying an airplane’s ability to manage icing, which in turn would lower development costs for airplane manufacturers.
  • Designing more fuel-efficient airplanes that are not as expensive to operate.

The project began in 2015 using the icing wind tunnel at GRC. The research continued through the end of 2018, when tests wrapped up in France at ONERA’s wind tunnel. Since then researchers have been compiling, refining, and sharing their results via technical papers and presentations. The final set of data will become public when the five-year agreement officially ends on May 31, 2020.

Anyone who has worked with 3D printers knows that, depending on the material used, when completed the final part can have some rough surfaces. Professional model makers almost instinctively have the urge to sand the part until it is smooth. When the 3D icing research team got to the point where they were ready to try printing their first few models, they farmed out the work to a contractor who had previous experience modeling some of the simpler ice shapes of the past. “There was a bit of a learning curve because some of these ice geometries were pretty funky and had surfaces that were naturally quite rough,” Broeren said.

The contractor model makers didn’t know that, and thanks to their instinctive model making skills they sanded the 3D-printed ice sculptures until they were smooth, ruining the model’s value as a research tool. “There definitely was a little bit of an education process that had to go on, but we laugh about it now,” Broeren said.

(Images provided with NASA news release)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (09.16.24): Receiver Autonomous Integrity Monitoring

Receiver Autonomous Integrity Monitoring (RAIM) A technique whereby a civil GNSS receiver/processor determines the integrity of the GNSS navigation signals without reference to sen>[...]

ANN's Daily Aero-Linx (09.16.24)

Aero Linx: The Flying Dentists Association The Flying Dentists Association is a professional and social association devoted to continuing dental education combined with aviation an>[...]

NTSB Prelim: Piper PA-28-140

Clouds Were At About 100 Ft Above The Ground When (Witness) Initially Heard The Airplane Fly By On August 26, 2024, about 0931 central daylight time, a Piper PA28-140, N9626K, was >[...]

ANN's Daily Aero-Term (09.17.24): Instrument Approach Procedure (IAP) Charts

Instrument Approach Procedure (IAP) Charts Portray the aeronautical data which is required to execute an instrument approach to an airport. These charts depict the procedures, incl>[...]

Aero-News: Quote of the Day (09.17.24)

“Our industry is approaching a 30-year innovation cycle, and we have less than 25 years to decarbonize aviation. We need to develop new methods to get net zero aerospace tech>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC