NASA Mars Lander Digs Deeper Into Soil | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Tue, Aug 26, 2008

NASA Mars Lander Digs Deeper Into Soil

Primary Mission Nears End, Second Phase To Begin Tuesday

The next sample of Martian soil being grabbed for analysis is coming from a trench about three times deeper than any other trench NASA's Phoenix Mars Lander has dug.

On Tuesday, the spacecraft will finish the 90 Martian days (or "sols") originally planned as its primary mission and will continue into a mission extension through September, as announced by NASA in July. Phoenix landed on May 25.

"As we near what we originally expected to be the full length of the mission, we are all thrilled with how well the mission is going," said Phoenix Project Manger Barry Goldstein of NASA's Jet Propulsion Laboratory, Pasadena, CA.

Phoenix's main task for Sol 90 is to scoop up a sample of soil from the bottom of a trench called "Stone Soup," which is about 18 centimeters, or 7 inches deep. On a later sol, the lander's robotic arm will sprinkle soil from the sample into the third cell of the wet chemistry laboratory. This deck-mounted laboratory, part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer (MECA), has previously used two of its four soil-testing cells.

"In the first two cells we analyzed samples from the surface and the ice interface, and the results look similar. Our objective for Cell 3 is to use it as an exploratory cell to look at something that might be different," said JPL's Michael Hecht, lead scientist for MECA. "The appeal of Stone Soup is that this deep area may collect and concentrate different kinds of materials."

Stone Soup lies on the borderline, or natural trough, between two of the low, polygon-shaped hummocks that characterize the arctic plain where Phoenix landed. The trench is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

When digging near a polygon center, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters, or 2 inches, beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

"The trough between polygons is sort of a trap where things can accumulate," Hecht said. "Over a long timescale, there may even be circulation of material sinking at the margins and rising at the center."

The science team had considered two finalist sites as sources for the next sample to be delivered to the wet chemistry lab. This past weekend, Stone Soup won out. "We had a shootout between Stone Soup and white stuff in a trench called 'Upper Cupboard,'" Hecht said. "If we had been able to confirm that the white material was a salt-rich deposit, we would have analyzed that, but we were unable to confirm that with various methods."

Both candidates for the sampling location offered a chance to gain more information about salt distribution in the Phoenix work area, which could be an indicator of whether or not liquid water has been present. Salt would concentrate in places that may have been wet.

While proceeding toward delivery of a sample from Stone Soup into the wet chemistry laboratory, Phoenix is also using its Thermal and Evolved-Gas Analyzer to examine a soil sample collected last week from another trench, at a depth intermediate between the surface and the hard, icy layer.

The Phoenix mission is led by Peter Smith from the University of Arizona with project management at the Jet Propulsion Laboratory, Pasadena, CA and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute. The California Institute of Technology in Pasadena manages JPL for NASA.

FMI: www.nasa.gov/phoenix, http://phoenix.lpl.arizona.edu

Advertisement

More News

Bolen Gives Congress a Rare Thumbs-Up

Aviation Governance Secured...At Least For a While The National Business Aviation Association similarly applauded the passage of the FAA's recent reauthorization, contentedly recou>[...]

The SportPlane Resource Guide RETURNS!!!!

Emphasis On Growing The Future of Aviation Through Concentration on 'AFFORDABLE FLYERS' It's been a number of years since the Latest Edition of Jim Campbell's HUGE SportPlane Resou>[...]

Buying Sprees Continue: Textron eAviation Takes On Amazilia Aerospace

Amazilia Aerospace GmbH, Develops Digital Flight Control, Flight Guidance And Vehicle Management Systems Textron eAviation has acquired substantially all the assets of Amazilia Aer>[...]

Hawker 4000 Bizjets Gain Nav System, Data Link STC

Honeywell's Primus Brings New Tools and Niceties for Hawker Operators Hawker 4000 business jet operators have a new installation on the table, now that the FAA has granted an STC f>[...]

Echodyne Gets BVLOS Waiver for AiRanger Aircraft

Company Celebrates Niche-but-Important Advancement in Industry Standards Echodyne has announced full integration of its proprietary 'EchoFlight' radar into the e American Aerospace>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC