Supersonic Laminar Flow Tests Continue On NASA's F-15B | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Mon, Jul 22, 2013

Supersonic Laminar Flow Tests Continue On NASA's F-15B

Small Test Airfoil Being Evaluated In Conjunction With Aerion Corporation

NASA Dryden Flight Research Center’s F-15B Research Testbed aircraft has been busy this year, flying an experimental test fixture in partnership with Aerion Corporation of Reno, Nevada.

Called the Supersonic Boundary Layer Transition, Phase II, or SBLT-II, the experiment consists of flying a small test airfoil, or wing section, attached underneath the F-15B. This allows NASA and Aerion engineers to continue investigating the extent and robustness of natural laminar flow over the test section at supersonic speeds.

Conducting the experiment in actual supersonic flight conditions with the F-15B enables engineers to capture data in a real-world flight environment, allowing for more precise refining of supersonic natural laminar flow airfoil design. “The objective of the flight series is to investigate the extent and robustness of smooth, or laminar, airflow over the specially-designed test airfoil,” said Brett Pauer, NASA Dryden’s deputy High Speed Project manager. “Then, researchers will work to better understand when imperfections in the airfoil’s surface cause the air to transition from laminar to rough, turbulent flow. The greater the extent of laminar airflow over a wing, the less aerodynamic drag there is, which reduces fuel consumption,” Pauer said.

It is believed that significant laminar flow has never been achieved on any production supersonic aircraft before, so this research and the data being collected from the SBLT-II test fixture may help provide some of the data that might enable the design of supersonic aircraft in the future that have wings that produce laminar flow at supersonic cruise conditions.

One of the goals of NASA’s High Speed Project, which utilizes the F-15B and other high performance jets, is reducing the fuel consumption and increasing efficiency of future supersonic aircraft.

(Image provided by NASA.)

FMI: www.nasa.gov

Advertisement

More News

Airborne-Flight Training 05.09.24: ERAU at AIAA, LIFT Diamond Buy, Epic A&P

Also: Vertical Flight Society, NBAA Maintenance Conference, GA Honored, AMT Scholarship For the first time, students from Embry-Riddle’s Daytona Beach, Florida, campus took t>[...]

ANN's Daily Aero-Term (05.07.24): Hazardous Weather Information

Hazardous Weather Information Summary of significant meteorological information (SIGMET/WS), convective significant meteorological information (convective SIGMET/WST), urgent pilot>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

NTSB Final Report: Cessna 150

(FAA) Inspector Observed That Both Fuel Tanks Were Intact And That Only A Minimal Amount Of Fuel Remained In Each Analysis: According to the pilot, approximately 8 miles from the d>[...]

Aero-News: Quote of the Day (05.08.24)

“Pyka’s Pelican Cargo is unlike any other UAS solution on the market for contested logistics. We assessed a number of leading capabilities and concluded that the Pelica>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC