FAA Grant to Help Embry-Riddle Researchers Improve Drone Safety | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.14.24

Airborne-Unlimited-05.15.24 Airborne-AffordableFlyers-05.16.24

Airborne-Unlimited-05.17.24

Wed, Jul 06, 2022

FAA Grant to Help Embry-Riddle Researchers Improve Drone Safety

It’s a Bird, It’s a Plane, It’s …

Researchers at Embry-Riddle, the private aeronautical university with campuses in Vero Beach, Florida and Prescott, Arizona—have received a $371,000 grant from the Federal Aviation Administration to study the inflight, air-traffic detection systems of un-crewed aerial systems (UASs).

The research seeks to determine means by which to improve the safety of such systems as their widespread implementation looms imminent. 

The research will inform the development of standards and requirements for the sensitivity and accuracy of TCAS-style, detect-and-avoid systems, which will improve safety—especially in instances comprising contemporaneous operation of multiple UAS in a common airspace.  

Extant technology provides neither autonomous nor remote-piloted UASs sufficient data by which to differentiate between birds, kites, centerfield fly-balls, etc. and genuine threats such as other aerial vehicles. Inaccurate or misleading sensor data gives rise to an overall lack of situational awareness inconsistent with widespread implementation of Beyond Visual Line of Sight (BVLOS) missions in the National Airspace System.

By better establishing the capabilities and limitations of contemporary airborne platforms, cloud-based infrastructure, and user-interfaces, Embry-Riddle researchers hope to provide the FAA information germane to the proper regulation of near-future UAS operations.

Aerospace engineer and Embry-Riddle graduate Nathan Schaff states: “I think that advanced air mobility and unmanned aerial systems will be a defining aspect of the 21st century, but before that can happen, a great deal of time and effort must be put into making sure that when the first aircraft start to fly, people won’t get hurt. For this project, we are fundamentally focused on maximizing safety, and there’s no greater job than that.”

The research project, which will continue through March of 2024, is a collaboration between Embry-Riddle, Mississippi State University, Ohio State University, the University of North Dakota, and Cal Analytics.


FMI. www.erau.edu

Advertisement

More News

Bolen Gives Congress a Rare Thumbs-Up

Aviation Governance Secured...At Least For a While The National Business Aviation Association similarly applauded the passage of the FAA's recent reauthorization, contentedly recou>[...]

The SportPlane Resource Guide RETURNS!!!!

Emphasis On Growing The Future of Aviation Through Concentration on 'AFFORDABLE FLYERS' It's been a number of years since the Latest Edition of Jim Campbell's HUGE SportPlane Resou>[...]

Buying Sprees Continue: Textron eAviation Takes On Amazilia Aerospace

Amazilia Aerospace GmbH, Develops Digital Flight Control, Flight Guidance And Vehicle Management Systems Textron eAviation has acquired substantially all the assets of Amazilia Aer>[...]

Hawker 4000 Bizjets Gain Nav System, Data Link STC

Honeywell's Primus Brings New Tools and Niceties for Hawker Operators Hawker 4000 business jet operators have a new installation on the table, now that the FAA has granted an STC f>[...]

Echodyne Gets BVLOS Waiver for AiRanger Aircraft

Company Celebrates Niche-but-Important Advancement in Industry Standards Echodyne has announced full integration of its proprietary 'EchoFlight' radar into the e American Aerospace>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC