NASA Study Of Clay Minerals Suggests Watery Martian Underground | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Mon, Nov 07, 2011

NASA Study Of Clay Minerals Suggests Watery Martian Underground

Surface Water Likely Existed Only In Short Periods, If At All

A new NASA study suggests if life ever existed on Mars, the longest lasting habitats were most likely below the Red Planet's surface.

NASA Image

A new interpretation of years of mineral-mapping data, from more than 350 sites on Mars examined by European and NASA orbiters, suggests Martian environments with abundant liquid water on the surface existed only during short episodes. These episodes occurred toward the end of hundreds of millions of years during which warm water interacted with subsurface rocks. This has implications about whether life existed on Mars and how its atmosphere has changed.

"The types of clay minerals that formed in the shallow subsurface are all over Mars," said John Mustard, professor at Brown University in Providence, R.I. Mustard is a co-author of the study in the journal Nature. "The types that formed on the surface are found at very limited locations and are quite rare."

Discovery of clay minerals on Mars in 2005 indicated the planet once hosted warm, wet conditions. If those conditions existed on the surface for a long era, the planet would have needed a much thicker atmosphere than it has now to keep the water from evaporating or freezing. Researchers have sought evidence of processes that could cause a thick atmosphere to be lost over time.

NASA Image

This new study supports an alternative hypothesis that persistent warm water was confined to the subsurface and many erosional features were carved during brief periods when liquid water was stable at the surface. "If surface habitats were short-term, that doesn't mean we should be glum about prospects for life on Mars, but it says something about what type of environment we might want to look in," said the report's lead author, Bethany Ehlmann, assistant professor at the California Institute of Technology and scientist at NASA's Jet Propulsion Laboratory in Pasadena. "The most stable Mars habitats over long durations appear to have been in the subsurface. On Earth, underground geothermal environments have active ecosystems."

The discovery of clay minerals by the OMEGA spectrometer on the European Space Agency's Mars Express orbiter added to earlier evidence of liquid Martian water. Clays form from the interaction of water with rock. Different types of clay minerals result from different types of wet conditions.

During the past five years, researchers used OMEGA and NASA's Compact Reconnaissance Imaging Spectrometer, or CRISM, instrument on the Mars Reconnaissance Orbiter to identify clay minerals at thousands of locations on Mars. Clay minerals that form where the ratio of water interacting with rock is small generally retain the same chemical elements as the original volcanic rocks later altered by the water.

NASA Image

The study interprets this to be the case for most terrains on Mars with iron and magnesium clays. In contrast, surface environments with higher ratios of water to rock can alter rocks further. Soluble elements are carried off by water, and different aluminum-rich clays form.

Another clue is detection of a mineral called prehnite. It forms at temperatures above about 400 degrees Fahrenheit (about 200 degrees Celsius). These temperatures are typical of underground hydrothermal environments rather than surface waters. "Our interpretation is a shift from thinking that the warm, wet environment was mostly at the surface to thinking it was mostly in the subsurface, with limited exceptions," said Scott Murchie of Johns Hopkins University Applied Physics Laboratory in Laurel, Md., a co-author of the report and principal investigator for CRISM.

One of the exceptions may be Gale Crater, the site targeted by NASA's Mars Science Laboratory mission. Launching this year, the Curiosity rover will land and investigate layers that contain clay and sulfate minerals.

FMI: www.nasa.gov/mro

Advertisement

More News

ANN's Daily Aero-Term (04.25.24): Airport Rotating Beacon

Airport Rotating Beacon A visual NAVAID operated at many airports. At civil airports, alternating white and green flashes indicate the location of the airport. At military airports>[...]

ANN's Daily Aero-Linx (04.25.24)

Aero Linx: Fly for the Culture Fly For the Culture, Inc. is a 501(c)(3) non-profit organization that serves young people interested in pursuing professions in the aviation industry>[...]

Klyde Morris (04.22.24)

Klyde Is Having Some Issues Comprehending The Fed's Priorities FMI: www.klydemorris.com>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC