NASA Propulsion Experiment Seeks to Improve Jet Efficiency | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Thu, Dec 29, 2011

NASA Propulsion Experiment Seeks to Improve Jet Efficiency

CCIE Funded By NASA's Aeronautics Research Mission Directorate

Aeronautics researchers at NASA's Dryden Flight Research Center recently completed flight tests of a unique experimental jet engine inlet design in the Channeled Center-body Inlet Experiment, or CCIE.

The experimental inlet was checked out on NASA Dryden's F-15B aeronautics research test bed aircraft, which continues to be an innovative and cost-effective tool for flight test of advanced propulsion concepts. The CCIE project's primary research objective was to define the airflow through the experimental jet engine inlet, then compare it to the airflow through a standard inlet. Inside, airflow around two interchangeable center bodies installed in an air inlet tube was measured. The structures are designed to direct and compress airflow internally through the engine.

One center body is channeled; the other has a conventional, smooth shape. The slots cut along the length of the channeled center body simulate a simple device that in an actual inlet would allow optimization of the amount of air flowing into the engine, resulting in improved airflow efficiency at a wide variety of speeds. This would improve fuel efficiency as well.

Six flights were flown, three with each center body installed. Flight tests were made incrementally at speeds up to Mach 1.74, or about 1.7 times the speed of sound. Flight data from the smooth center body were used to benchmark performance data for the channeled center body. Data points that NASA Dryden engineers collected during the experiment included inlet mass airflow information, internal surface pressure distribution numbers, and airflow distortion, or turbulence, data at the exit end of the device.

Dryden propulsion engineers are now performing post-flight data analysis on the two inlet configurations and will report on the results. The resulting data will also be compared with computational fluid dynamics, or CFD, predictions. Potential future applications for the simplified inlet design include its use on a new generation of supersonic cruise aircraft, reducing the complexity and weight of this important component of supersonic propulsion systems.

The CCIE inlet was developed by TechLand Research, Inc., of North Olmsted, Ohio, through a NASA Small Business Innovation Research contract. The CCIE project is funded by NASA's Aeronautics Research Mission Directorate and managed by the Supersonics Project in the directorate's Fundamental Aeronautics Program.

FMI: www.nasa.gov/centers/dryden/home/index.html

 


Advertisement

More News

ANN's Daily Aero-Term (05.02.24): Touchdown Zone Lighting

Touchdown Zone Lighting Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet alon>[...]

Aero-News: Quote of the Day (05.02.24)

“Discovery and innovation are central to our mission at Virgin Galactic. We’re excited to build on our successful record of facilitating scientific experiments in subor>[...]

Aero-News: Quote of the Day (05.03.24)

"We are reaching out to you today on behalf of the Popular Rotorcraft Association because we need your help. We are dangerously close to losing a critical resource that if lost, wi>[...]

ANN's Daily Aero-Term (05.03.24): UAS Traffic Management (UTM)

UAS Traffic Management (UTM) The unmanned aircraft traffic management ecosystem that will allow multiple low altitude BVLOS operations and which is separate from, but complementary>[...]

ANN's Daily Aero-Linx (05.03.24)

Aero Linx: Society of Aviation and Flight Educators (SAFE) SAFE is a member-oriented organization of aviation educators fostering professionalism and excellence in aviation through>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC