Astroscale Checks Out Floating Orbital Debris | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.05.25

Airborne-NextGen-05.06.25

AirborneUnlimited-05.07.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Fri, Aug 09, 2024

Astroscale Checks Out Floating Orbital Debris

Successful Mission Intercepts Space Junk for a Scouting Mission

Astroscale Japan Inc got some beautiful shots of orbital debris after the first successful flight of their Active Debris Removal by Astroscale-Japan (ADRAS-J) satellite.

Their unit made a flyby of a floating remainder of a Japanese upper stage rocket body, taking a series of pictures of the spinning junk as it circled the Earth. It's great news for space enthusiasts, since the space race and its new commercial age has tended to leave a good deal of material orphaned in orbit. That's quickly becoming a danger to satellite and space station options, eliminating orbital tracks from consideration in order to avoid high-speed impact damage. ADRAS-J's feat is the first time a satellite has demonstrated the ability to safely approach and operate close to large debris, the first step in a technical evolution that will one day rendezvous forcefully de-orbit such objects. Space cleanup is still in its infancy, but Astroscale's glossy jpegs certainly show that it's possible to at least complete step one in plucking trash out of orbit.

ADRAS-J's scouting mission showed that the piece in question retained its original payload attachment fitting, which is Astroscale's target for an ADRAS-J2 mission. That should allow the next satellite to close with the rocket stage, connect to it, and engage its thrusters to drag the whole bus-sized rocket to its atmospheric doom below. Getting in close and personal isn't easy, though, and making actual contact with the target will be much tougher than simply sitting and snapping pictures from afar. Objects in low Earth orbit generally speed along in the neighborhood of 15 to 20,000 miles an hour, adding considerable complexity in not just launching to intercept it from earth, but to snatch it in a secure enough position that will ensure the debris' structural integrity as it's pulled out of orbit. A poor connection could cause even more problems than it solves, since large debris could inadvertently break up into many smaller pieces with improper handling.

FMI: www.astroscale.com

Advertisement

More News

ANN's Daily Aero-Term (05.07.25): Terminal Radar Service Area

Terminal Radar Service Area Airspace surrounding designated airports wherein ATC provides radar vectoring, sequencing, and separation on a full-time basis for all IFR and participa>[...]

ANN's Daily Aero-Linx (05.07.25)

Aero Linx: Utah Back Country Pilots Association (UBCP) Through the sharing experiences, the UBCP has built upon a foundation of safe operating practices in some of the most challen>[...]

Classic Aero-TV: Anousheh Ansari -- The Woman Behind The Prize

From 2010 (YouTube Edition): Imagine... Be The Change... Inspire FROM 2010: One of the more unusual phone calls I have ever received occurred a few years ago... from Anousheh Ansar>[...]

NTSB Prelim: Bell 206B

(Pilot) Felt A Shudder And Heard The Engine Sounding Differently, Followed By The Engine Chip Detector Light On April 14, 2025, about 1800 Pacific daylight time, a Bell 206B, N1667>[...]

Airborne-NextGen 05.06.25: AF Uncrewed Fighters, Drones v Planes, Joby Crew Test

Also: AMA Names Tyler Dobbs, More Falcon 9 Ops, Firefly Launch Unsuccessful, Autonomous F-16s The Air Force has begun ground testing a future uncrewed jet design in a milestone tow>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC