Mars Ingenuity Flight 34 Was Short But Significant | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.24.25

AirborneNextGen-
11.18.25

Airborne-Unlimited-11.19.25

Airborne-AffordableFlyers-11.20.25

AirborneUnlimited-11.21.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Sun, Nov 27, 2022

Mars Ingenuity Flight 34 Was Short But Significant

NASA's Joshua Anderson Reports From JPL

Compared to some of the other flights this past year, Flight 34 might not stand out. Even shorter than Ingenuity’s first flight, Tuesday’s successful 18-second flight simply popped up to a little over 16 feet, hovered, then landed. Despite the flight’s simple nature, the team is very excited because of what it means for the future of Ingenuity.

Over the past few weeks, the operations team has been at work installing a major software update aboard the helicopter. This update provides Ingenuity two major new capabilities: hazard avoidance when landing and the use of digital elevation maps to help navigate.

Ingenuity was developed as a technology demonstration and designed to operate on Mars in flat, smooth terrain like that at Wright Brothers Field. As Ingenuity moved on to exploring Jezero Crater alongside the Perseverance rover, we traveled through more challenging terrain than the team had ever anticipated.

In prior flights, Ingenuity’s pilots have needed to find airfields free of any rocks or other obstacles that could potentially damage the vehicle when landing. Jezero Crater is a rocky place, so safe airfields have been tough to find! Using Ingenuity’s downward-facing navigation camera, this software update adds hazard avoidance on landing. While in flight, Ingenuity will identify the safest visible landing site. When preparing to land, Ingenuity will then divert over to this selected site. This capability allows Ingenuity to safely land in rockier terrain than before, providing our pilots with many more potential landing sites.

Ingenuity’s navigation software was designed to assume the vehicle was flying over flat terrain. When the helicopter is flying over terrain like hills, this flat-ground assumption causes Ingenuity’s navigation software to think the vehicle is veering, causing Ingenuity to start actually veering in an attempt to counter the error. Over long flights, navigation errors caused by rough terrain must be accounted for, requiring the team to select large airfields. This new software update corrects this flat-ground assumption by using digital elevation maps of Jezero Crater to help the navigation software distinguish between changes in terrain and vehicle movement. This increases Ingenuity’s accuracy, allowing the pilots to target smaller airfields going forward.

Flight 34 may not seem like much, but it was Ingenuity’s first with this software update. The team will use results from this simple flight to start testing these new capabilities, ensuring that everything works as expected on the surface of Mars. The update brings out new functionality in Ingenuity, making it a far more capable vehicle and effective scout for Perseverance.

FMI: https://mars.nasa.gov/technology/helicopter/

Advertisement

More News

Airborne 11.24.25: ANN's 30th!, Starship’s V3 Booster Boom, Earhart Records

Also: 1st-Ever Space Crime Was a Fraud, IAE Buys Diamonds, Kennon Bows Out, Perseverance Rover An interesting moment came about this past Sunday as ANN CEO, Jim Campbell, noted tha>[...]

ANN FAQ: Submit a News Story!

Have A Story That NEEDS To Be Featured On Aero-News? Here’s How To Submit A Story To Our Team Some of the greatest new stories ANN has ever covered have been submitted by our>[...]

Classic Aero-TV: DeltaHawk Aero Engine Defies Convention

From 2023 (YouTube Edition): Deviation from the Historical Mean Racine, Wisconsin-based DeltaHawk is a privately-held manufacturer of reciprocating engines for aircraft and hybrid >[...]

NTSB Final Report: Glasair GlaStar

Smoke Began Entering The Cockpit During The Landing Flare, And Then The Pilot Noticed Flames On The Right Side Of The Airplane Analysis: The pilot reported that about 30 minutes in>[...]

ANN's Daily Aero-Term (11.22.25): Remote Communications Outlet (RCO)

Remote Communications Outlet (RCO) An unmanned communications facility remotely controlled by air traffic personnel. RCOs serve FSSs. Remote Transmitter/Receivers (RTR) serve termi>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC