NASA Offers Space Tech Grants To Early Career University Faculty | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Mon, Mar 02, 2015

NASA Offers Space Tech Grants To Early Career University Faculty

Will Sponsor Research In Specific High-Priority Areas

NASA's Space Technology Mission Directorate is seeking proposals from accredited U.S. universities on behalf of outstanding early-career faculty members who are beginning independent research careers. The grants will sponsor research in specific high-priority areas of interest to America's space program.

Aligned with NASA's Space Technology Roadmaps and priorities identified by the National Research Council, the agency has identified topic areas that lend themselves to the early stage innovative approaches U.S. universities can offer for solving tough space technology challenges.

"These research grants will help NASA in the development of new space technologies needed for future science and exploration while also fueling the intellectual innovation engine of our nation, powering new discoveries for years to come," said James Reuther, deputy associate administrator for NASA's Space Technology Mission Directorate in Washington. "Technology drives exploration and these research efforts will help us reach new heights while benefiting Earth right now."

NASA expects to award approximately six to eight grants this fall. Grants will be funded up to $200,000 each per year, for as many as three years, based on the merit of proposals and availability of funds. Funded research will investigate unique, disruptive or transformational space technologies in areas such as dynamic tensegrity technologies for space science and exploration, high-temperature solar cells, fundamental aerothermodynamic model development and synthetic biology technologies for space exploration.

Dynamic tensegrity-based technologies have the potential to enable more capable and affordable space missions through large, reconfigurable space structures and lightweight, volume efficient landers. Tensegrity, or "tensional integrity," uses tension and compression in skeleton structures for efficient and economic machine design. The first solicitation topic seeks dynamic tensegrity technologies for in-space, landing and surface operations applications.

Generation of power in a space environment is a challenge for all space missions. Research focused on high-temperature solar cells lead to smaller, more efficient and lower-cost solar cell size. The second topic seeks novel solar cell material combinations, cell laydown concepts, and heat rejection methods that allow solar arrays to function at reasonable levels of efficiency at higher operational temperatures.

NASA missions rely on computational simulations to predict conditions a spacecraft may experience during atmospheric entry on other planets -- calculations that help experts decide the type and thickness of materials used to make thermal protection systems for spacecraft. Investment in basic aerothermal physical models and numerical methods is needed to generate revolutionary improvements to the current state of the art and enable NASA's journey to Mars. This topic seeks innovative physical models for high speed non-equilibrium flows, novel approaches to obtain experimental validation data and improved numerical methods for the simulation of such flows.

NASA also is interested in innovative biological approaches to provide functions that traditional technologies cannot perform for future long-duration missions. Specifically, the fourth topic seeks novel synthetic biology-based approaches that can substantially improve  functionality, reliability, and efficiency in food production, biomedical applications, and in situ resource utilization.

Notices of intent to submit proposals to the Early Career Faculty Appendix of NASA's Research Announcement "Space Technology Research, Development, Demonstration, and Infusion 2015 (SpaceTech-REDDI-2015)" are due March 20. The deadline for submitting final proposals is April 17.

FMI: http://go.nasa.gov/1vwtqZz, www.nasa.gov/spacetech

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC