JPL, Masten Testing New Precision Landing Software | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Wed, Aug 14, 2013

JPL, Masten Testing New Precision Landing Software

Flight Control Algorithm Designed To Make Touchdowns More Accurate

A year after NASA's Mars rover Curiosity's landed on Mars, engineers at NASA's Jet Propulsion Laboratory in Pasadena, CA, are testing a sophisticated flight-control algorithm that could allow for even more precise, pinpoint landings of future Martian spacecraft.

Flight testing of the new Fuel Optimal Large Divert Guidance algorithm – G-FOLD for short – for planetary pinpoint landing is being conducted jointly by JPL engineers in cooperation with Masten Space Systems in Mojave, CA, using Masten's XA-0.1B "Xombie" vertical-launch, vertical-landing experimental rocket.
 
NASA's Space Technology Mission Directorate is facilitating the tests via its Game-Changing Development and Flight Opportunities Programs; the latter managed at NASA's Dryden Flight Research Center at Edwards Air Force Base, CA The two space technology programs work together to test game-changing technologies by taking advantage of Flight Opportunities' commercially provided suborbital platforms and flights.
 
"The Flight Opportunities Program supports both the development of innovative space technology and the emerging suborbital industry by using commercial suborbital vehicles to test concepts that could further mankind's exploration and understanding of the universe," said Christopher Baker, a campaign manager for the program. "The collaboration between JPL and Masten to test G-FOLD is a great example of how we hope to further the exploration of the solar system while building up the industrial base needed to advance future space endeavors."
 
Current powered-descent guidance algorithms used for spacecraft landings are inherited from the Apollo era. These algorithms do not optimize fuel usage and significantly limit how far the landing craft can be diverted during descent. The new G-FOLD algorithm invented by JPL autonomously generates fuel-optimal landing trajectories in real time and provides a key new technology required for planetary pinpoint landing. Pinpoint landing capability will allow robotic missions to access currently inaccessible science targets. For crewed missions, it will allow increased precision with minimal fuel requirements to enable landing larger payloads in close proximity to predetermined targets.
 
Masten Space Systems launched the Xombie July 30 from the company's test pad at the Mojave Air and Space Port. JPL and Masten are planning to conduct a second flight test with a more complicated divert profile in August, pending data analysis.
 
To simulate a course correction during a Martian entry in the July test, Masten's Xombie was given a vertical descent profile to an incorrect landing point. About 90 feet into the profile, the G-FOLD flight control software was automatically triggered to calculate a new flight profile in real-time, and the rocket was successfully diverted to the "correct" landing point some 2,460 feet away. 
 
"This flight was an unprecedented free-flying demonstration of the on-board calculation of a fuel-optimal trajectory in real time," said Martin Regehr, acting task lead for the Autonomous Descent Ascent Powered-Flight Testbed at JPL.

Masten Space Systems is one of seven suborbital reusable launch companies contracted by NASA's Flight Opportunities Program to fly experiments in sub-orbital space to verify new technologies work as expected in this harsh environment.

(Image provided by NASA)

FMI http://mars.jpl.nasa.gov/msl

Advertisement

More News

ANN's Daily Aero-Term (05.10.24): Takeoff Roll

Takeoff Roll The process whereby an aircraft is aligned with the runway centerline and the aircraft is moving with the intent to take off. For helicopters, this pertains to the act>[...]

Aero-News: Quote of the Day (05.10.24)

“We’re proud of the hard work that went into receiving this validation, and it will be a welcome relief to our customers in the European Union. We couldn’t be mor>[...]

Airborne 05.06.24: Gone West-Dick Rutan, ICON BK Update, SpaceX EVA Suit

Also: 1800th E-Jet, Uncle Sam Sues For Landing Gear, Embraer Ag Plane, Textron Parts A friend of the family reported that Lt. Col. (Ret.) Richard Glenn Rutan flew west on Friday, M>[...]

Airborne 05.03.24: Advanced Powerplant Solutions, PRA Runway Woes, Drone Racing

Also: Virgin Galactic, B-29 Doc to Allentown, Erickson Fire-Fighters Bought, FAA Reauthorization After dealing with a big letdown after the unexpected decision by Skyreach to disco>[...]

Aero-News: Quote of the Day (05.11.24)

"Aircraft Spruce is pleased to announce the acquisition of the parts distribution operations of Wag-Aero. Wag-Aero was founded in the 1960’s by Dick and Bobbie Wagner in the >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC