NASA Aeronautics Develops Multirotor Test Bed | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-07.07.25

Airborne-NextGen-07.08.25

AirborneUnlimited-07.09.25

Airborne-FlightTraining-07.10.25

AirborneUnlimited-07.11.25

Mon, Dec 16, 2019

NASA Aeronautics Develops Multirotor Test Bed

Testing Air Taxis, Drones and More For Urban Air Mobility

City dwellers’ daily commutes may soon take flight, the rotors of their air taxis spinning as they lift off from the rooftops. In anticipation of this coming era of air travel, called Urban Air Mobility – and many other applications – NASA has developed a flexible way to test new designs for aircraft that use multiple rotors to fly. The Multirotor Test Bed, or MTB, will let researchers study a wide variety of rotor configurations for different vehicles, including tiltrotor aircraft, mid-sized drones and those future air taxis.

The agency released a video showing the MTB set up in a four-rotor configuration during a recent demonstration inside the U.S. Army’s 7- by 10-foot wind tunnel at NASA’s Ames Research Center in California’s Silicon Valley. While spinning, the rotors move between a forward, airplane-like orientation and an upward, helicopter-like one that can simulate vertical takeoff and hovering. The entire structure tilts, too, mimicking different orientations of an aircraft as it flies. To highlight this range of motion, the video is shown at eight times normal speed, starting at 0:38.

By allowing for these adjustments and measuring the loads on individual rotors, the test bed will provide a wealth of data on the aeromechanics of an array of multirotor configurations. The MTB was developed at Ames, where it will be available to aerospace researchers from NASA, as well as the agency’s partners in industry, academia and government for assessments of new multirotor aircraft concepts. The data researchers can collect with the MTB will validate computer simulations used to study multirotor systems and improve predictions of their performance and noise.

Recently, the MTB completed tests in the U.S. Army’s 7- by 10-foot wind tunnel at Ames, demonstrating its readiness to move forward as a resource for testing.

(Image from NASA video)

FMI: Video
www.nasa.gov/topics/aeronautics

Advertisement

More News

Airborne 07.11.25: New FAA Boss, New NASA Boss (Kinda), WB57s Over TX

Also: ANOTHER Illegal Drone, KidVenture Educational Activities, Record Launches, TSA v Shoes The Senate confirmed Bryan Bedford to become the next Administrator of the FAA, in a ne>[...]

Airborne-Flight Training 07.10.25: ATC School, Air Race Classic, Samson School

Also: Sully v Bedford, Embraer Scholarships, NORAD Intercepts 11, GAMA Thankful Middle Georgia State University will be joining the Federal Aviation Administration’s fight ag>[...]

Airborne Affordable Flyers 07.03.25: Sonex HW, BlackShape Gabriel, PRA Fly-In 25

Also: DarkAero Update, Electric Aircraft Symposium, Updated Instructor Guide, OSH Homebuilts Celebrate The long-awaited Sonex High Wing prototype has flown... the Sonex gang tells >[...]

Airborne-Flight Training 07.10.25: ATC School, Air Race Classic, Samson School

Also: Sully v Bedford, Embraer Scholarships, NORAD Intercepts 11, GAMA Thankful Middle Georgia State University will be joining the Federal Aviation Administration’s fight ag>[...]

Rick Kenin New Board Chair of VAI

30-Year USCG Veteran Aviator Focusing On Member Benefits The Vertical Aviation International Board of Directors announced its new leadership officers in April, and all began their >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC