Martian Landscape Gets A New Look | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.24.25

AirborneNextGen-
11.18.25

Airborne-Unlimited-11.19.25

Airborne-AffordableFlyers-11.20.25

AirborneUnlimited-11.21.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Sun, Sep 12, 2010

Martian Landscape Gets A New Look

NASA Data Shed New Light About Water and Volcanoes on Mars

Data from NASA's Phoenix Mars Lander suggest liquid water has interacted with the Martian surface throughout the planet's history and into modern times. The research also provides new evidence that volcanic activity has persisted on the Red Planet into geologically recent times, several million years ago.

Although the lander, which arrived on Mars on May 25, 2008, is no longer operating, NASA scientists continue to analyze data gathered from that mission. These recent findings are based on data about the planet's carbon dioxide, which makes up about 95 percent of the Martian atmosphere. "Atmospheric carbon dioxide is like a chemical spy," said Paul Niles, a space scientist at NASA's Johnson Space Center in Houston. "It infiltrates every part of the surface of Mars and can indicate the presence of water and its history."

Phoenix precisely measured isotopes of carbon and oxygen in the carbon dioxide of the Martian atmosphere. Isotopes are variants of the same element with different atomic weights. Niles is lead author of a paper about the findings published in Thursday's online edition of the journal "Science." The paper explains the ratios of stable isotopes and their implications for the history of Martian water and volcanoes. "Isotopes can be used as a chemical signature that can tell us where something came from, and what kinds of events it has experienced," Niles said.

This chemical signature suggests that liquid water primarily existed at temperatures near freezing and that hydrothermal systems similar to Yellowstone's hot springs have been rare throughout the planet's past. Measurements concerning carbon dioxide showed Mars is a much more active planet than previously thought. The results imply Mars has replenished its atmospheric carbon dioxide relatively recently, and the carbon dioxide has reacted with liquid water present on the surface.

Measurements were performed by an instrument on Phoenix called the Evolved Gas Analyzer. The instrument was capable of doing more accurate analysis of carbon dioxide than similar instruments on NASA's Viking landers in the 1970s. The Viking Program provided the only previous Mars isotope data sent back to Earth.


Mars Phoenix Lander/NASA Image

The low gravity and lack of a magnetic field on Mars mean that as carbon dioxide accumulates in the atmosphere, it will be lost to space. This process favors loss of a lighter isotope named carbon-12 compared to carbon-13. If Martian carbon dioxide had experienced only this process of atmospheric loss without some additional process replenishing carbon-12, the ratio of carbon-13 to carbon-12 would be much higher than what Phoenix measured. This suggests the Martian atmosphere recently has been replenished with carbon dioxide emitted from volcanoes, and volcanism has been an active process in Mars' recent past. However, a volcanic signature is not present in the proportions of two other isotopes, oxygen-18 and oxygen-16, found in Martian carbon dioxide. The finding suggests the carbon dioxide has reacted with liquid water, which enriched the oxygen in carbon dioxide with the heavier oxygen-18.

Niles and his team theorize this oxygen isotopic signature indicates liquid water has been present on the Martian surface recently enough and abundantly enough to affect the composition of the current atmosphere. The findings do not reveal specific locations or dates of liquid water and volcanic vents, but recent occurrences of those conditions provide the best explanations for the isotope proportions.

The Phoenix mission was led by principal investigator Peter H. Smith of the University of Arizona in Tucson, with project management at NASA's Jet Propulsion Laboratory in Pasadena, Calif. The University of Arizona provided the lander's thermal and evolved gas analyzer.

FMI: www.nasa.gov/phoenix

Advertisement

More News

Airborne 11.24.25: ANN's 30th!, Starship’s V3 Booster Boom, Earhart Records

Also: 1st-Ever Space Crime Was a Fraud, IAE Buys Diamonds, Kennon Bows Out, Perseverance Rover An interesting moment came about this past Sunday as ANN CEO, Jim Campbell, noted tha>[...]

ANN FAQ: Submit a News Story!

Have A Story That NEEDS To Be Featured On Aero-News? Here’s How To Submit A Story To Our Team Some of the greatest new stories ANN has ever covered have been submitted by our>[...]

Classic Aero-TV: DeltaHawk Aero Engine Defies Convention

From 2023 (YouTube Edition): Deviation from the Historical Mean Racine, Wisconsin-based DeltaHawk is a privately-held manufacturer of reciprocating engines for aircraft and hybrid >[...]

NTSB Final Report: Glasair GlaStar

Smoke Began Entering The Cockpit During The Landing Flare, And Then The Pilot Noticed Flames On The Right Side Of The Airplane Analysis: The pilot reported that about 30 minutes in>[...]

ANN's Daily Aero-Term (11.22.25): Remote Communications Outlet (RCO)

Remote Communications Outlet (RCO) An unmanned communications facility remotely controlled by air traffic personnel. RCOs serve FSSs. Remote Transmitter/Receivers (RTR) serve termi>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC