Techshot Artificial Gravity Machine To Launch Aboard SpaceX CRS-14 | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Thu, Mar 29, 2018

Techshot Artificial Gravity Machine To Launch Aboard SpaceX CRS-14

Device Reproduces Earth, Moon, Mars Gravity To Aid Research Aboard International Space Station

A new privately-owned and operated device designed to conduct research in space at varying gravity levels with a wide variety of sample types – such as tissue chips, plants, fish, cells, protein crystals, worms and flies – will launch to the International Space Station (ISS) aboard the next SpaceX cargo resupply mission. Expected to launch April 2 from space launch complex 40 at Florida's Cape Canaveral Air Force Station, SpaceX CRS-14 will carry the Techshot Multi-use Variable-gravity Platform (MVP), which can produce artificial gravity in 0.1 g increments, up to a maximum of 2.0 g.

Research aboard the ISS with Techshot's Bone Densitometer X-ray machine for mice confirms that prolonged exposure to microgravity causes detrimental effects such as bone loss and muscle wasting. With NASA's renewed focus on a return to the Moon, where gravity is only 0.16 g – before venturing even further to Mars, where gravity is 0.38 g (Earth is 1.0 g) – scientists need to better understand how much gravity is enough for pioneering human crews to remain healthy while living on the surface. Research using MVP is expected to help answer that question.

"I believe we're entering an unprecedented golden age of human spaceflight," said Techshot President and CEO John C. Vellinger. "Never before have so many options been on the horizon for living and working in low-earth orbit and beyond. Research with MVP can help scientists better prepare us to thrive in our collective spacefaring future."

Approximately the size of a microwave oven, MVP hosts six separate experiment modules on each of two 390 mm internal carousels. Experiment modules launch separately in cargo resupply vehicles and are installed by the crew in MVP once they reach the station. Each is customized to accommodate the sample type and experiment protocol of a given research campaign. Lighting and video and still imagery, including microscopy, also can be included in each. Both carousels can be removed on orbit and replaced with fixed platforms for large microgravity experiments. The environment inside MVP can be monitored and controlled remotely from Techshot's Payload Operations Control Center at its Greenville, Indiana, headquarters or at its Exploration Park, Florida, office.

The Techshot MVP is just the latest entry in the company's comprehensive catalog of flight-qualified research equipment – joining the Bone Densitometer, the Advanced Space Experiment Processor and the Analytical Containment Transfer Tool as readily available flight qualified payloads. Other space-based devices in development by the company include a large centrifuge for research with rats and mice, a 3D BioFabrication Facility, and a multi-material in-space manufacturing payload known as the Techshot FabLab.

Though the hardware is designed for studies with many different kinds of samples, the first experiment launching on SpaceX CRS-14 will focus on Drosophila melanogaster (fruit flies). Known as MVP-Fly-01, this first campaign using the system will be conducted for a research team at NASA Ames Research Center in Mountain View, California.

The availability of MVP will be especially important for fly research because it will allow the study of larger sample sizes over longer periods of time than previously possible, and it will be able to support fly colonies for multiple generations. The payload will help scientists improve their understanding of a wide range of biological processes that affect human health – both on and off the Earth. Approximately 77 percent of human disease genes have analogs in the fruit fly genome.

(Image provided with Techshot news release)

FMI: www.nasa.gov/ames/research/space-biosciences/mvp-spacex-14, www.Techshot.space

Advertisement

More News

ANN's Daily Aero-Term (05.09.24): Hold Procedure

Hold Procedure A predetermined maneuver which keeps aircraft within a specified airspace while awaiting further clearance from air traffic control. Also used during ground operatio>[...]

ANN's Daily Aero-Term (05.06.24): Altitude Readout

Altitude Readout An aircraft’s altitude, transmitted via the Mode C transponder feature, that is visually displayed in 100-foot increments on a radar scope having readout cap>[...]

ANN's Daily Aero-Linx (05.06.24)

Aero Linx: European Hang Gliding and Paragliding Union (EHPU) The general aim of the EHPU is to promote and protect hang gliding and paragliding in Europe. In order to achieve this>[...]

Airborne-NextGen 05.07.24: AI-Piloted F-16, AgEagle, 1st 2 WorldView Sats

Also: Skydio Chief, Uncle Sam Sues, Dash 7 magniX, OR UAS Accelerator US Secretary of the Air Force Frank Kendall was given a turn around the patch in the 'X-62A Variable In-flight>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC