New Satellite Imaging To Better Forecast Locust Plagues | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.17.25

AirborneNextGen-
11.11.25

Airborne-Unlimited-11.12.25

Airborne-FltTraining-11.13.25

AirborneUnlimited-11.14.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Mon, Jun 19, 2017

New Satellite Imaging To Better Forecast Locust Plagues

Data Collected From ESA's Soil Moisture And Ocean Salinity Mission Helps Pinpoint Possible Trouble Areas

Information from satellites is being used in a new way to predict favourable conditions for Desert Locust swarms, as part of an early warning collaboration by scientists from the European Space Agency (ESA) and Desert Locust experts at the UN Food and Agriculture Organization (FAO). The new technology will help to increase the warning time for locust outbreaks by up to two months.

Using data from satellites such as ESA's Soil Moisture and Ocean Salinity mission (SMOS), a new tool has been developed to monitor the conditions that can lead to swarming locusts, such as soil moisture and green vegetation. Swarming occurs when a period of drought is followed by good rains and rapid vegetation growth.

"At FAO, we have a decades-long track record of forecasting plagues and working closely with countries at greatest risk to implement control measures. By bringing our expertise together with ESA's satellite capabilities we can significantly improve timely and accurate forecasting. Longer warning periods give countries more time to act swiftly to control a potential outbreak and prevent massive food losses," said Keith Cressman, FAO's Senior Locust Forecasting Officer.

"Routine global observations by the Copernicus Sentinel satellites coupled with the free and open data policy are excellent prerequisites for a closer cooperation with international partners like FAO and other UN organizations," said Josef Aschbacher, ESA's Director of Earth Observation Programs which is based in Italy. "We strongly support these organizations' Research & Development activities, which helps to continuously innovate the use of the satellite observations."

Soil moisture indicates how much water is available for vegetation growth and favorable locust breeding conditions, and can therefore predict the presence of locusts 2-3 months in advance. In the past, satellite-based locust forecasts were derived from information on green vegetation, meaning the favorable conditions for locust swarms were already present and only allowed for a warning period of one month.

The new tool was validated in Algeria, Mali, Mauritania and Morocco. Using the example of Mauritania's last outbreak in 2016, the team was able to identify a time lag of about 70 days from the initial signs of soil moisture to when the outbreak eventually occurred. The additional early warning will allow more time for national authorities to prepare for control measures when facing future outbreaks.

"We now have the possibility to see the risk of a locust outbreak one to two months in advance, which helps us to better establish preventive control," said Ahmed Salem Benahi, Chief Information Officer for Mauritania's National Centre for Locust Control.

Desert Locusts are grasshoppers that can form large swarms and pose a major threat to agricultural production, livelihoods and food security. They are found primarily in the Sahara, across the Arabian Peninsula and into India. The insect is usually harmless, but swarms can migrate across long distances and cause widespread crop damage. A one square kilometre-sized swarm contains about 40 million locusts, which eat the same amount of food in one day as about 35,000 people.

More than 8 million people were affected in West Africa during the 2003-2005 plague in which cereal crops were wiped out and up to 90 percent of legumes and pasture were destroyed. It took nearly $600 million and 13 million liters (approx. 3.4 million gallons) of pesticide to bring it under control.

(Image provided with UN Food and Agriculture Organization news release)

FMI: www.fao.org

Advertisement

More News

Classic Aero-TV: Extra Aircraft Announces the Extra 330SX

From 2023 (YouTube Edition): An Even Faster Rolling Extra! Jim Campbell joined General Manager of Extra Aircraft Duncan Koerbel at AirVenture 2023 to talk about what’s up and>[...]

Aero-News: Quote of the Day (11.15.25)

“Receiving our Permit to Fly and starting Phase 4 marks a defining moment for Vertical Aerospace. Our team has spent months verifying every core system under close regulatory>[...]

ANN's Daily Aero-Term (11.15.25): Middle Marker

Middle Marker A marker beacon that defines a point along the glideslope of an ILS normally located at or near the point of decision height (ILS Category I). It is keyed to transmit>[...]

NTSB Final Report: Lancair 320

The Experienced Pilot Chose To Operate In Instrument Meteorological Conditions Without An Instrument Flight Rules Clearance Analysis: The airplane was operated on a personal cross->[...]

Airborne 11.14.25: Last DC-8 Retires, Boeing Recovery, Teeny Trig TXP

Also: ATI Strike Prep, Spirit Still Troubled, New CubCrafters Dealership, A-29 Super Tucano Samaritan’s Purse is officially moving its historic Douglas DC-8 cargo jet into re>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC