The Promise Of eSTOL | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date



Airborne-Wednesday Airborne-Thursday


Airborne On YouTube



Airborne-Unlimited-05.22.24 Airborne-FlightTraining-05.23.24


Wed, Jul 24, 2019

The Promise Of eSTOL

New Technology Meets Old School

By: Rex Alexander

While accelerating the airflow over the top of the wing of an aircraft to help increase its overall lift is nothing new, it is the advancements in technology such as better electric motors coupled with improvements in ducted fans that is breathing new life into this 1940's tech. This is beginning to make this aviation adaptation look more feasible every day for Short Takeoff and Landing (STOL) aircraft.

In the 1940s and 50s, the process of increasing the airflow over the upper surface of a wing showed great promise in creating aircraft that were capable of slower flight speeds without stalling, steeper approach angles and extremely short takeoff and landing distances. One man who is currently conducting research and testing in this space is Dr. David Ullman who is an Emeritus Professor of Design from Oregon State University and an active electric aircraft designer. According to Dr. Ullman by playing with the aerodynamics of a wing through the application of distributive ducted fans along the leading edge, one has the potential to significantly improve lift in some very interesting ways.

This application could allow for higher fidelity in airflow management to the point that it may be possible to completely eliminate the need for ailerons on aircraft in the future. This is accomplished by independently manipulating the thrust of individual ducted fans installed along a wingís leading edge. In theory, this application could reduce an aircraftís stall speed to as low as 25 knots (28 mph).

While a STOL aircraft does require a certain amount of room to take off and land, this technology could allow for takeoffs in as little as 20 to 80 feet while using 1/5th of the total power required to takeoff vertical at the same location. This huge savings in power would then equate to much greater flight ranges being achievable. Based on current stats, an eVTOL aircraft could have nearly half the range of an eSTOL aircraft.

(Image provided by author)




More News

Aero-News: Quote of the Day (05.25.24)

“Warbirds in Review features veterans, aviation legends, and aircraft that simply cannot be seen together in one place anywhere else in the world. Many of these veterans main>[...]

Airborne 05.22.24: NS-25 Chute Failure, #HonorTheWASP, SkyCourier 'Combi'

Also: VAI v Anti-Heli Actions, Electric Aircraft Symposium, 2024 FAA Drone/AAM Symposium, Gravitymaster Blue Origin's seventh passenger flight ended with a smidgeon of drama when o>[...]

Aero-News: Quote of the Day (05.26.24)

“The importance of this YF-16 paint scheme is celebrating 50 years of the F-16 Viper. Everyone at Edwards has a big sense of pride for not only supporting the Viper Demo Team>[...]

ANN's Daily Aero-Linx (05.26.24)

Aero Linx: National Aeronca Association We are dedicated to supporting the design and preserving the history of Aeronca aircraft. Founded by Jim Thompson and fostered by his leader>[...]

Klyde Morris (05.24.24)

Klyde Sounds Like He's Defining An 'Influencer' FMI:>[...]

blog comments powered by Disqus





© 2007 - 2024 Web Development & Design by Pauli Systems, LC