NASA Aeronautics Develops Multirotor Test Bed | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.24.25

AirborneNextGen-
11.18.25

Airborne-Unlimited-11.19.25

Airborne-AffordableFlyers-11.20.25

AirborneUnlimited-11.21.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Mon, Dec 16, 2019

NASA Aeronautics Develops Multirotor Test Bed

Testing Air Taxis, Drones and More For Urban Air Mobility

City dwellers’ daily commutes may soon take flight, the rotors of their air taxis spinning as they lift off from the rooftops. In anticipation of this coming era of air travel, called Urban Air Mobility – and many other applications – NASA has developed a flexible way to test new designs for aircraft that use multiple rotors to fly. The Multirotor Test Bed, or MTB, will let researchers study a wide variety of rotor configurations for different vehicles, including tiltrotor aircraft, mid-sized drones and those future air taxis.

The agency released a video showing the MTB set up in a four-rotor configuration during a recent demonstration inside the U.S. Army’s 7- by 10-foot wind tunnel at NASA’s Ames Research Center in California’s Silicon Valley. While spinning, the rotors move between a forward, airplane-like orientation and an upward, helicopter-like one that can simulate vertical takeoff and hovering. The entire structure tilts, too, mimicking different orientations of an aircraft as it flies. To highlight this range of motion, the video is shown at eight times normal speed, starting at 0:38.

By allowing for these adjustments and measuring the loads on individual rotors, the test bed will provide a wealth of data on the aeromechanics of an array of multirotor configurations. The MTB was developed at Ames, where it will be available to aerospace researchers from NASA, as well as the agency’s partners in industry, academia and government for assessments of new multirotor aircraft concepts. The data researchers can collect with the MTB will validate computer simulations used to study multirotor systems and improve predictions of their performance and noise.

Recently, the MTB completed tests in the U.S. Army’s 7- by 10-foot wind tunnel at Ames, demonstrating its readiness to move forward as a resource for testing.

(Image from NASA video)

FMI: Video
www.nasa.gov/topics/aeronautics

Advertisement

More News

Aero-News: Quote of the Day (11.26.25)

“We are disappointed with today’s verdict and respectfully disagree with the outcome. From the outset, we have maintained that Gogo’s independently developed 5G t>[...]

ANN's Daily Aero-Term (11.26.25): Takeoff Hold Lights (THL)

Takeoff Hold Lights (THL) The THL system is composed of in-pavement lighting in a double, longitudinal row of lights aligned either side of the runway centerline. The lights are fo>[...]

ANN's Daily Aero-Linx (11.26.25)

Aero Linx: The 1-26 Association (Schweizer) The Association’s goal is to foster the helpfulness, the camaraderie, and the opportunity for head-to-head competition that is fou>[...]

Airborne Affordable Flyers 11.20.25: Sonex $$$, SnF 26 MOSAIC DAY, P. Ponk STCs

Also: Elfin 20 Journey, BASE Jumper Rescue, Pipistrel Makes Waves, EAA Hall of Fame, Affordable Flying Expo 2026 Like most of the industry, kit manufacturer Sonex has been hit by t>[...]

ANN's Daily Aero-Linx (11.27.25)

Aero Linx: The de Havilland Moth Club Ltd The de Havilland Moth Club evolved from a belief that an association of owners and operators of Moth aeroplanes should be formed to create>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC