Tufts Researchers Find New Cost-Effective Way To Make Fuel Cells | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-12.02.24

Airborne-NextGen-12.03.24

Airborne-Unlimited-12.04.24

Airborne Holiday

Airborne Holiday

Sun, Jul 06, 2003

Tufts Researchers Find New Cost-Effective Way To Make Fuel Cells

Discovery Could Ignite "Engine Of The Future"

Researchers at Tufts University have discovered that it's possible to make hydrogen from fossil fuels using far less platinum or gold than current fuel processing technology has required. Their research shows that 90 percent of precious metals used today may be removed from the catalyst without affecting its ability to produce hydrogen.
This finding could have potential cost savings of millions of dollars in the materials required to commercialize the fuel cell technology.

The research will be published in the July 3 edition of "Science Express," the online version of the journal Science that provides rapid electronic publication of timely and important research papers. The article also will be published in Science later this summer.

A fuel cell consists of two electrodes sandwiched around an electrolyte. Hydrogen fed to the one electrode (anode) passes through the electrolyte in the form of protons and combines with oxygen on the other electrode (cathode) making water and producing heat. Electricity is generated in the process. A fuel cell will produce energy in the form of electricity and heat as long as fuel and oxygen are supplied. To produce fuel-cell quality hydrogen, an important step involves the removal of any by-product carbon monoxide, which poisons the fuel cell anode catalyst.

"A lot of people have spent a lot of time studying the properties of gold and platinum nanoparticles that are used to catalyze the reaction of carbon monoxide with water to make hydrogen and carbon dioxide," said Maria Flytzani-Stephanopoulos, professor of chemical and biological engineering at Tufts and the lead researcher of the project. "We find that for this reaction over a cerium oxide catalyst carrying the gold or platinum, metal nanoparticles are not important. Only a tiny amount of the precious metal in non metallic form is needed to create the active catalyst. Our finding will help researchers find a cost-effective way to produce clean energy from fuel cells in the near future"

She and her two colleagues, doctoral student Qi Fu and research professor Howard Saltsburg, were funded by a $300,000 three-year grant from the National Science Foundation, and have filed a provisional patent for their research. Their cutting-edge work in catalytic fuel processing to generate hydrogen for fuel cell applications is one of the major undertakings at Tufts' Science and Technology Center at the University's Medford campus (MA).

The Tufts researchers' article is based on the "water-gas shift" reaction they use to make hydrogen from water and carbon monoxide over cerium oxide loaded with gold or platinum. Typically, a loading of 1-10 weight percent of gold or other precious metals is used to make an effective catalyst. But the Tufts team discovered that, after stripping the gold with a cyanide solution, the catalyst was just as active with a slight amount of the gold remaining – one-tenth the normal amount used.

According to Flytzani-Stephanopoulos, "This finding is significant because it shows that metallic nanoparticles are mere 'spectator species' for some reactions, such as the water-gas shift. The phenomenon may be more general, since we show that it also holds for platinum and may also hold true for other metals and metal oxide supports, such as titanium and iron oxide."

She adds, "It opens the way for new catalyst designs so more hydrogen can be produced with less precious metal. This can pave the way for cost-effective clean energy production from fuel cells in the near future."

Fuel cells currently are being used on a trial basis in some buses, cars and even hotels, but they're expensive. It may take up to 10 years until the technology is used in transportation and by the general population. (Since the 1960s, one type of fuel cell has powered NASA's spacecrafts.)

"We've raised the issue of now having to look back and see if less precious metal may be used in other similar applications," said Saltsburg. There's much more to be done, and that's what makes the research exciting."

FMI: www.tufts.edu

Advertisement

More News

Read/Watch/Listen... ANN Does It All

There Are SO Many Ways To Get YOUR Aero-News! It’s been a while since we have reminded everyone about all the ways we offer your daily dose of aviation news on-the-go...so he>[...]

Airborne 12.02.24: Electra FG EIS, Prez Osprey Problems, Starship Wants 25

Also: EAA Ray Foundation, MagniX Records, Ruko U11MINI Drone, RCAF PC-21s Elektra Solar recently put the first aircraft from its Elektra Trainer Fixed-Gear (FG) family into service>[...]

Airborne 12.02.24: Electra FG EIS, Prez Osprey Problems, Starship Wants 25

Also: EAA Ray Foundation, MagniX Records, Ruko U11MINI Drone, RCAF PC-21s Elektra Solar recently put the first aircraft from its Elektra Trainer Fixed-Gear (FG) family into service>[...]

Aero-Biz Survival 101 (1120a): Expert Ideas To Help You Through Tough Times

Brand New! Avoid The Need For A Comeback... Get Your Marketing Right, Right Now! Some time ago, the Aero-News Network, responding to numerous requests, established a marketing and >[...]

We're Accepting Resumes -- AND Hiring! ANN Puts Out 'Help Wanted' Sign

BIG Upgrades In The Works --- ANN Is Seeking EXCEPTIONAL New Staffers The last few years have been about as challenging a time as we can recall... but we survive (yeah, we're kinda>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC