NASA Conducts 3rd RS-25 Engine Test Ahead of Artemis | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.24.25

AirborneNextGen-
11.18.25

Airborne-Unlimited-11.19.25

Airborne-AffordableFlyers-11.20.25

AirborneUnlimited-11.21.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Sun, Dec 03, 2023

NASA Conducts 3rd RS-25 Engine Test Ahead of Artemis

Aerojet Rocketdyne Continues Work on Rocket for Lunar Return

NASA finished the 3rd of a series of 12 ground tests of the SLS rocket that will one day power Artemis program missions to the moon - and beyond.

The RS-25 engines are swinging for the fences in a change from the norm around NASA, where uncrewed, spacefaring drones became the norm. Manned missions require a lot of thrust, and the aged, handworked Saturn V was simply too difficult to recreate today without retreading significant design ground. The RS-25 will boast the best tech that they can build today, with all kinds of additive manufacturing and computer optimization allowing for futuristic improvements in weight and output (hopefully quality, too but only time will tell.) As installed, 4 engines will generate a combined 1.6 million pounds of thrust at launch, and 2 million during ascent. Artemis missions I through IV will use "modified holdover space shuttle main engines", scavenged by NASA and Aerojet Rocketdyne in a feat of thriftiness.

The 11-minute hot fire occurred on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. This one wasn't a garden variety static test, either, being used to test the engine's gimbaling techniques that will one day prove vital to control and stabilize the SLS as it reaches orbit. As part of the test, operators "also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety." In practice, the RS-25s will fire for 500 seconds straight, while the test took one straight to 650 seconds of burn. Even better to stress-test it, the RS-25 was fired up to 113% of regular output, exceeding the "111% needed to lift SLS to orbit."

FMI: www.nasa.gov

Advertisement

More News

Classic Aero-TV: Extra; the Airplane, the Man, and His Grand DeLand Plan

From 2023 (YouTube Edition): Germany’s Best by Way of Florida Established in 1980 by German aerobatic pilot Walter Extra as a means by which to design and develop his own air>[...]

ANN FAQ: Follow Us On Instagram!

Get The Latest in Aviation News NOW on Instagram Are you on Instagram yet? It's been around for a few years, quietly picking up traction mostly thanks to everybody's new obsession >[...]

Aero-News: Quote of the Day (11.27.25)

“Achieving PMA for the S-1200 Series magnetos is another step in expanding our commitment to providing the aviation community with the most trusted and durable ‘firewal>[...]

ANN's Daily Aero-Term (11.27.25): Ultralight Vehicle

Ultralight Vehicle A single-occupant aeronautical vehicle operated for sport or recreational purposes which does not require FAA registration, an airworthiness certificate, or pilo>[...]

ANN's Daily Aero-Linx (11.27.25)

Aero Linx: The de Havilland Moth Club Ltd The de Havilland Moth Club evolved from a belief that an association of owners and operators of Moth aeroplanes should be formed to create>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC