Northrop Grumman Deploys New Carrier Arrester System | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-06.10.24

Airborne-NextGen-06.11.24

Airborne-Unlimited-06.12.24 Airborne-FltTraining-06.13.24

Airborne-Unlimited-06.14.24

Wed, Nov 21, 2007

Northrop Grumman Deploys New Carrier Arrester System

Enables Safer Aircraft Carrier Landings

Northrop Grumman recently deployed the first digitally-controlled arrestment system, which the company says dramatically upgrades the critical process of "catching" aircraft on carriers.

The Advanced Recovery Control (ARC) system was deployed on the USS Ronald Reagan (CVN-76) aircraft carrier and performed its first successful operational arrestment at sea on November 5. ARC was designed and developed by an integrated product development team consisting of Northrop Grumman's Power/Control Systems business unit, Naval Air Systems Command, Aircraft Launch and Recovery Equipment Engineering and Test, and NDI Engineering Company.

ARC is the Navy's first electronic digital control system for aircraft arrestment. Awarded to Northrop Grumman as the prime contractor, the program includes design, development, first article qualification and production. After a successful development and test program, the ARC system was granted Milestone "C" approval to proceed with production in June 2006.

ARC installation began in July 2007 on the first of 10 aircraft carriers scheduled to receive the upgrade. ARC is a key part of the Navy's plans for extending the service life of carriers and allowing for arrestments of heavier aircraft entering the fleet. NAVAIR plans to retrofit ARC on Nimitz-class carriers and also deploy it at three shore-based training facilities.

ARC is an upgrade to the existing MK 7 arrestment system. It uses a precision digital control system to replace the existing maintenance-intensive system of chains, cams and levers to close the constant run-out valve. ARC uses a computer system with feedback and built-in redundancy to accurately and safely arrest the aircraft on the carrier's deck. The ARC upgrade includes digital controls, software, graphical displays, programmable arrestment profiles, and redundant electronically-controlled actuators that precisely control the arrestment process.

"This milestone represents the first shipboard software-controlled aircraft arrestment in naval aviation history," said Ed Tipton, Northrop Grumman's ARC program manager. "The equipment worked 'right out of the box,' which underscores the precision development of this groundbreaking system."

FMI: www.northropgrumman.com, www.navy.mil

Advertisement

More News

ANNouncement: Now Accepting Applications For Oshkosh 2024 Stringers!!!

An Amazing Experience Awaits The Chosen Few... Oshkosh, to us, seems the perfect place to get started on watching aviation recover the past couple of years... and so ANN is putting>[...]

Aero-News: Quote of the Day (06.13.24)

“NBAA has a tremendous responsibility to the business aviation industry, and we are constantly collaborating with them. Our flight departments, professionals and aircraft own>[...]

ANN's Daily Aero-Term (06.13.24): Dead Reckoning

Dead Reckoning Dead reckoning, as applied to flying, is the navigation of an airplane solely by means of computations based on airspeed, course, heading, wind direction, and speed,>[...]

ANN's Daily Aero-Linx (06.13.24)

Aero Linx: Vertical Aviation Safety Team (VAST) We are a public–private initiative to enhance worldwide flight operations safety in all segments of the vertical flight indust>[...]

ANN FAQ: How Do I Become A News Spy?

We're Everywhere... Thanks To You! Even with the vast resources and incredibly far-reaching scope of the Aero-News Network, every now and then a story that should be reported on sl>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC