SMART-1's Ion Engine Fired Successfully | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.28.25

Airborne-NextGen-04.29.25

AirborneUnlimited-04.30.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Fri, Oct 03, 2003

SMART-1's Ion Engine Fired Successfully

That's Good News, Since It's in Orbit Right Now

The European Space Agency wanted us to know that there's been progress since liftoff last weekend. SMART-1's revolutionary propulsion system was successfully fired at 12:25 UT on 30 September, 2003, while in orbit around the Earth.

Engineers at ESOC, the European Space Agency's control centre in Darmstadt, Germany, sent a command to begin the firing test, which lasted for one hour. This was similar to a trial performed on Earth before SMART-1 was launched.

Several months ago, the ion engine, or Solar Electric Primary Propulsion (SEPP) system, had been placed in a vacuum chamber on the ground and its functions and operation were measured. Now in space and in a true vacuum, the ion engine actually worked better than in the test than on the ground, and has nudged SMART-1 a little closer to the Moon.

This is the first time that Europe has put an electric primary propulsion system in space; and it's also the first European use of this particular type of ion engine, called a 'Hall-effect' thruster.

The SEPP consists of a single ion engine fuelled by xenon gas and powered by solar energy. The ion engine will accelerate SMART-1 very gradually to cause the spacecraft to travel in a series of spiralling orbits -- each revolution slightly further away from the Earth -- towards the Moon. Once captured by the Moon's gravity, SMART-1 will move into ever-closer orbits of the Moon. The little SMART-1 will cover well over sixty million miles to get to the moon, even though the distance as the crow flies [bad choice of words, that!] is just about a quarter-million miles; but it will be done with less fuel than anyone could have imagined a generation ago.

As part of one of the overall mission objectives to test this new SEPP technology, the data will now be analyzed to see how much acceleration was achieved and how smoothly the spacecraft travelled. If the ion engine is performing to expectations, ESA engineers will regularly power up the SEPP to send SMART-1 on its way.  

FMI: www.esa.int

Advertisement

More News

ANN's Daily Aero-Linx (04.30.25)

Aero Linx: Aviators Code Initiative (ACI) Innovative tools advancing aviation safety and offering a vision of excellence for aviators. The ACI materials are for use by aviation pra>[...]

ANN FAQ: Turn On Post Notifications

Make Sure You NEVER Miss A New Story From Aero-News Network Do you ever feel like you never see posts from a certain person or page on Facebook or Instagram? Here’s how you c>[...]

Classic Aero-TV: Agile Aero’s Jeff Greason--Disruptive Aerospace Innovations

From 2016 (YouTube Edition): Who You Gonna Call When You Have a Rocket Engine that Needs a Spacecraft? While at EAA AirVenture 2016, ANN CEO and Editor-In-Chief, Jim Campbell, sat >[...]

Aero-News: Quote of the Day (04.30.25)

"In my opinion, if this isn't an excessive fine, I don't know what is... The odds are good that we're gonna be seeking review in the United States Supreme Court. So we gotta muster>[...]

ANN's Daily Aero-Term (04.30.25): Expedite

Expedite Used by ATC when prompt compliance is required to avoid the development of an imminent situation. Expedite climb/descent normally indicates to a pilot that the approximate>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC