Mon, Jun 04, 2012
SLS Capability Will Enable Future Human Space Exploration
Three flight computer software test beds have been delivered to NASA by Boeing ... the first critical element for flight software development in support of NASA's Space Launch System (SLS). Flight software controls the launch vehicle during preflight tanking operations and in flight. The test beds were delivered on April 25 to the Software Development Facility at NASA's Marshall Space Flight Center in Huntsville. They are now being integrated with NASA's application software.

"These are the most capable flight computers ever developed for human spaceflight," said Dane Richardson, manager for the Boeing SLS Avionics and Software Team. "They have the highest processing capability available in a flight computer and triple modular redundant processors. The technology is proven from years of satellite applications, and it's reliable enough to take SLS beyond Earth's orbit."
In triple modular redundant processing, three processors within each flight computer interpret the data, then "vote" to be sure they all agree on the response before sending that solution from the computer. The three flight computers on the vehicle then compare those answers and send commands to the vehicle for execution. "The triple redundant processors make each computer reliable in the harsh radiation environment. Similarly, the three computers working in concert make the vehicle reliable," explained Richardson. "The configuration is called the flight computer operating group."
"We are moving out very quickly on SLS," said Todd May, Space Launch System Program manager at NASA's Marshall Space Flight Center in Huntsville, Ala. "SLS will be the most powerful launch vehicle ever built, and it requires the most capable flight software in the history of human spaceflight. Having this avionics hardware in place early will allow the NASA SLS team and Boeing to accelerate the flight software development."
In 2011, NASA executed a contract modification that changed existing Upper Stage Production and Instrument Unit Avionics contracts into a single contract for design, development and production of the cryogenic stages and avionics for SLS.
Under NASA's phased development plan for SLS, Boeing is designing the two cryogenic stages concurrently to maximize the affordability of rocket development and operations. The initial flight-test configuration, scheduled to fly in 2017, will provide a 70-metric ton capacity using only the first stage. The complete two-stage vehicle configuration will provide a lift capability of more than 130 metric tons to enable missions beyond Earth orbit and support deep space exploration. (SLS image provided by NASA)
More News
Aero Linx: International Federation of Airworthiness (IFA) We aim to be the most internationally respected independent authority on the subject of Airworthiness. IFA uniquely combi>[...]
Ultrahigh Frequency (UHF) The frequency band between 300 and 3,000 MHz. The bank of radio frequencies used for military air/ground voice communications. In some instances this may >[...]
A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]
From 2019 (YouTube Edition): Learning To Paint Without Getting Any On Your Hands PPG's Aerospace Coatings Academy is a tool designed to teach everything one needs to know about all>[...]
Also: Sustainable Aircraft Test Put Aside, More Falcon 9 Ops, Wyoming ANG Rescue, Oreo Cookie Into Orbit Joby Aviation has reason to celebrate, recently completing its first full t>[...]