FAA Releases Study Of Potential Injuries Caused By UAVs | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.28.25

Airborne-NextGen-04.29.25

AirborneUnlimited-04.30.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Tue, May 02, 2017

FAA Releases Study Of Potential Injuries Caused By UAVs

UAS Ground Severity Evaluation Final Report Prepared By Alliance For System Safety Of UAS Through Research Excellence (ASSURE)

What might happen if a drone hits a person on the ground? What’s the risk of serious injury? Although the FAA can’t yet definitively answer those questions, studies by a consortium of leading universities have made a start toward better understanding the risks of allowing small unmanned aircraft – or drones – to fly over people.

According to the final report, released last last week, injury potential of a drone impact at the same mass and impact energy are dramatically different. 

The consortium that conducted the research includes the University of Alabama-Huntsville; Embry-Riddle Aeronautical University; Mississippi State University; and the University of Kansas, through the Alliance for System Safety of UAS through Research Excellence (ASSURE). ASSURE represents 23 of the world's leading research institutions and 100 leading industry and government partners. It began the research in September 2015.

The research team reviewed techniques used to assess blunt force trauma, penetration injuries and lacerations – the most significant threats to people on the ground. The team classified collision severity by identifying hazardous drone features, such as unprotected rotors.

The group also reviewed more than 300 publications from the automotive industry and consumer battery market, as well as toy standards and the Association for Unmanned Vehicle Systems International (AUVSI) database. Finally, the team conducted crash tests, dynamic modeling, and analyses related to kinetic energy, energy transfer, and crash dynamics. When the studies were complete, personnel from NASA, the Department of Defense, FAA chief scientists, and other subject matter experts conducted a strenuous peer review of the findings.

The studies identified three dominant injury types applicable to small drones:

  • Blunt force trauma – the most significant contributor to fatalities
  • Lacerations – blade guards required for flight over people
  • Penetration injuries – difficult to apply consistently as a standard

The research showed multi-rotor drones fall more slowly than the same mass of metal due to higher drag on the drone. Unlike most drones, wood and metal debris do not deform and transfer most of their energy to whatever they hit. Also, the lithium batteries that power many small drones need a unique standard to ensure safety.

The team recommended continued research to refine the metrics developed. The team members suggested developing a simplified test method to characterize potential injury, and validating a proposed standard and models using potential injury severity test data.

The second phase of ASSURE’s research is set to begin in June 2017, and will examine the risks of collisions with aircraft.

(Images from ASSURE videos)

FMI: Full Report with Videos  

Advertisement

More News

Classic Aero-TV: Active Winglets -- Tamarack Aerospace Partners with Cessna

From 2014 (YouTube Version): Innovative Aerodynamic Technologies Produce Game-Changing Results At the NBAA 2013 convention, ANN CEO and Editor-In-Chief, Jim Campbell had a chance t>[...]

Aero-News: Quote of the Day (05.03.25)

“This plan opens insurance options to a much wider variety of Canadian aviators across the country who have otherwise had more challenges with securing insurance coverage... >[...]

ANN's Daily Aero-Term (05.03.25): Taxi

Taxi The movement of an airplane under its own power on the surface of an airport (14 CFR section 135.100 [Note]). Also, it describes the surface movement of helicopters equipped w>[...]

ANN's Daily Aero-Linx (05.03.25)

Aero Linx: The Vertical Flight Society (VFS) The Vertical Flight Society, formerly the American Helicopter Society, is the non-profit technical society for the advancement of verti>[...]

Airborne 05.02.25: Joby Crewed Milestone, Diamond Club, Canadian Pilot Insurance

Also: Sustainable Aircraft Test Put Aside, More Falcon 9 Ops, Wyoming ANG Rescue, Oreo Cookie Into Orbit Joby Aviation has reason to celebrate, recently completing its first full t>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC