A Cross-Center Collaboration Leads To An Aerogel Based Aircraft Antenna | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-12.02.24

Airborne-NextGen-12.03.24

Airborne-Unlimited-12.04.24

Airborne Flt Training-12.05.24

Airborne-Unlimited-12.06.24

Mon, Nov 04, 2019

A Cross-Center Collaboration Leads To An Aerogel Based Aircraft Antenna

Designed To Minimize Drag To Gain Efficiency Compared To A Conventional Satellite Dish

NASA’s four aeronautics research centers collaborated to create a new lightweight antenna to boost aircraft and antenna performance.

This unique conformal antenna is designed to minimize drag to gain efficiency compared to a conventional satellite dish. Current satellite dishes are heavy and bulky and require a gimbal to maneuver and point at different satellites for communications.

This multicenter effort used aerogels to develop the conformal antenna under the Conformal Lightweight Antenna Structures for Aeronautical Communications Technologies (CLAS-ACT) activity within the Convergent Aeronautics Solutions project. NASA’s Ames Research Center and Armstrong Flight Research Centers in California, Glenn Research Center in Ohio and Langley Research Center in Virginia are the agency’s aeronautics centers.

The CLAS-ACT team set out on a mission to design a lightweight antenna using aerogels that consist of 90% air. Aerogels are very lightweight compared to conventional antenna materials, which can result in a thin, flexible antenna with improved gain, bandwidth and efficiency.

The conformal antenna is made of 64 small antennas that combine to perform the function of one large antenna. The antenna can also maneuver the signal, minimizing interference with ground users in ways not possible with a traditional antenna.

The antenna is designed with a new commercial phased array chipset to enable a small size, low-weight and power solution for beyond line-of-sight communications on small to medium scale unmanned aircraft systems (UAS). The phased array chipset reduces radio interference to ground stations to address interference concerns from UAS being integrated into the national airspace.

The phased array demonstrated the ability to lower side lobes, or unintentional radiation from the antenna, as the conformal antenna delivers its signal to its intended target.

The project team performed flight tests with the antenna installed on the luggage door of a T-34C aircraft. A newly developed robotic antenna scanner allowed for extended preflight testing and verification. Both tests measured the antenna’s pattern characteristics to determine the feasibility of the interference mitigation techniques. The team completed five flight tests including four antenna configurations within a variety of flight altitudes and demonstrated a reduction of side lobes.

The antenna was designed and tested in the anechoic chamber at Glenn, the on-aircraft modeling of the antenna’s performance happened at Langley Research, the preflight planning was accomplished at Ames Research and the integration and flight tests occurred at Armstrong.

The CLAS-ACT team has documented its research outcomes and lessons learned to support aeronautics as more companies introduce their UAS. The cross-center collaboration will continue as the team determines its next steps.

(Images provided with NASA news release)

FMI: www.nasa.gov

Advertisement

More News

NTSB Final Report: Michael G Darby DARD 1

After Landing He Realized He Had Misidentified The Runway And Landed In Softer Snow Analysis: The pilot reported that during approach to the snow-covered runway in flat light condi>[...]

ANN's Daily Aero-Term (12.04.24): Arresting System

Arresting System A safety device consisting of two major components, namely, engaging or catching devices and energy absorption devices for the purpose of arresting both tailhook a>[...]

Aero-News: Quote of the Day (12.04.24)

“We learned a great deal in the process, such as greater coding skills, soldering techniques, and video editing skills...” Source: Cuyahoga County Team Captain John Ana>[...]

Airborne Affordable Flyers 11.26.24: BushCat's Back!, LODA Update, DRL Miami

Also: Van Celebrates 85th, Trio Pro Pilot Autopilot, Joby on MSFS24, Sonex Transition The BushCat was manufactured in South Africa by SkyReach beginning in 2014, selling its first >[...]

Airborne 12.02.24: Electra FG EIS, Prez Osprey Problems, Starship Wants 25

Also: EAA Ray Foundation, MagniX Records, Ruko U11MINI Drone, RCAF PC-21s Elektra Solar recently put the first aircraft from its Elektra Trainer Fixed-Gear (FG) family into service>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC