GKN Aerospace Delivers Innovative Clean Sky Wing Structure | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-10.20.25

AirborneNextGen-
10.21.25

Airborne-Unlimited-10.22.25

Airborne-FltTraining-10.23.25

AirborneUnlimited-10.17.25

Sat, Jan 16, 2016

GKN Aerospace Delivers Innovative Clean Sky Wing Structure

Flight Tests To Begin In 2017

Innovative wing components are part of a major research program to test and measure the benefits of ‘natural laminar flow’ (NLF) designs during trials on the wing of a flight test aircraft have been delivered for integration on an A340 flight test aircraft.

The Breakthrough Laminar Aircraft Demonstrator in Europe (BLADE) project is part of the Clean Sky Smart Fixed Wing Aircraft (SWFA) program, an extensive, 50% European Union-funded, multi-partner activity aimed at lowering fuel consumption and emissions by reducing aircraft drag.

GKN Aerospace has delivered the critical leading edge assemblies and upper covers that form part of the NLF wing section on the starboard wing of the Airbus A340 flight test aircraft. These innovative structures offer NLF levels of performance through the adoption, by GKN Aerospace, of a totally new design approach and the application of novel manufacturing technologies that deliver the ultra-high tolerances and exceptional surface finish required.

During flight tests, taking place in 2017, this wing section will be used to test the performance characteristics of NLF wing architecture, helping prove predicted economic and environmental benefits: An NLF wing is expected to reduce wing drag by 8% and improve fuel consumption by approaching 5%.

“The SFWA BLADE program is allowing us to progress innovative technologies, concepts and capabilities with the potential to bring about a step change in aircraft fuel consumption,” said Russ Dunn, Senior Vice President, Engineering and Technology at GKN Aerospace.

“The key challenge with designing and manufacturing an NLF wing, with the many aerodynamic benefits that promises, stems from the need to tightly control the wing surface." Dunn said. "It is vital to eliminate features such as steps, gaps, surface roughness and waviness or fastener heads as these all lead to more traditional ‘turbulent flow’ performance levels. The GKN Aerospace team has created these integrated, co-cured composite upper covers and very high tolerance leading edge surfaces using the same structured design and development process applied in commercial aircraft programs. As a result, our first part was of very high quality and has been delivered for the flight test program - which for such an innovative structure was a huge achievement for the entire team.”

(Images provided with GKN Aerospace news release)

FMI: www.gkn.com/aerospace

 


Advertisement

More News

Affordable Flying Expo Announces Industry MOSAIC Town Hall

Scheduled for Friday, November 7th at 1800ET, The MOSAIC Town Hall, Webcast At www.airborne-live.net One of the more intriguing features of the 2025 Affordable Flying Expo, schedul>[...]

Classic Aero-TV: Composite-FX Sets Elevates the Personal Helicopter Market

From 2023 (YouTube Edition): The Mosquito Evolves Formerly known as Mosquito, Trenton, Florida-based Composite FX is a designer and manufacturer of personal kit and factory-finishe>[...]

Aero-News: Quote of the Day (10.25.25)

“The Board is pleased to name Lisa as our next CEO after conducting a comprehensive succession planning process and believes this transition will ensure continued success for>[...]

ANN's Daily Aero-Term (10.25.25): Ground Stop (GS)

Ground Stop (GS) The GS is a process that requires aircraft that meet a specific criteria to remain on the ground. The criteria may be airport specific, airspace specific, or equip>[...]

NTSB Final Report: Gallow Daniel A Kitfox Classic IV

The Airplane Stalled Above The Runway Threshold, The Nose Dropped, The Nose Wheel Impacted The Runway, And The Airplane Flipped Over Analysis: The pilot reported that during the fi>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC