In-Flight Sensor Tests A Step Toward Aircraft Structural Health Monitoring | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.05.25

Airborne-NextGen-05.06.25

AirborneUnlimited-05.07.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Sun, Oct 05, 2014

In-Flight Sensor Tests A Step Toward Aircraft Structural Health Monitoring

Sandia Labs Testing Advanced Technology To Enhance Aviation Safety

Nine commercial aircraft flying regular routes are on the frontier of aviation safety, carrying sensors that monitor their structural health along with their routine maintenance. These flight tests are part of an FAA certification process that will make the sensors widely available to U.S. airlines.

“The flight test program is underway,” said Dennis Roach, a senior scientist in Sandia National Laboratories’ Transportation, Safeguards & Surety Program who has worked in aviation safety for 25 years. “We have moved past laboratory research and are looking for certification for actual on-board usage. Our activities are proving that the sensors work on particular applications and that it is safe and reliable to use these sensor systems for routine aircraft maintenance.”

Delta Air Lines Inc. and a foreign aircraft manufacturer have partnered with Sandia researchers in two separate programs to install about 100 sensors on their commercial aircraft. These teams worked together to provide the installation procedures for technicians and now oversee monitoring of the in-flight tests.

The flight tests complement laboratory performance testing at Sandia to provide the critical step in a decade-long journey to enhance airline safety through a more comprehensive program of Structural Health Monitoring. SHM uses nondestructive inspection principles — technologies that examine materials for damage without affecting their usefulness — and built-in sensors that automatically and remotely assess an aircraft’s structural condition in real time and signal the need for maintenance.

Roach said the goal of monitoring the sensors installed on the aircraft is to accumulate successful flight history to show that the sensors can sustain the operating environment, while providing the proper signals for flaw detection.

SHM eventually could help airlines save money by basing maintenance on the actual condition of the aircraft, rather than fixed schedules and inspection routines that might not be necessary, and thereby reduce airplanes’ downtimes, Roach said.

The team said so far, sensors installed on the aircraft are working as expected.

Next year, Sandia intends to present the flight and laboratory test results to the FAA for approval and certification. Should the FAA approve the sensors, they would be available for specific applications across the entire airline industry and the process for certifying future applications should be more efficient because of the research being conducted now.

(Pictured Top: Sandia National Laboratories senior scientist Dennis Roach, center, works inside the cabin of a B737 test bed, installing and acquiring data from Structural Health Monitoring sensors with Sandia mechanical engineers Stephen Neidigk and Tom Rice. Bottom: Structural Health Monitoring sensors are custom built to fit an aircraft’s parts. They can be mounted in hard-to-reach areas of an aircraft so that mechanics can plug in to acquire data without the time, cost and risk of removing parts from the aircraft)

FMI: www.sandia.gov

Advertisement

More News

ANN's Daily Aero-Linx (05.06.25)

Aero Linx: International Federation of Airworthiness (IFA) We aim to be the most internationally respected independent authority on the subject of Airworthiness. IFA uniquely combi>[...]

ANN's Daily Aero-Term (05.06.25): Ultrahigh Frequency (UHF)

Ultrahigh Frequency (UHF) The frequency band between 300 and 3,000 MHz. The bank of radio frequencies used for military air/ground voice communications. In some instances this may >[...]

ANN FAQ: Q&A 101

A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]

Classic Aero-TV: Virtual Reality Painting--PPG Leverages Technology for Training

From 2019 (YouTube Edition): Learning To Paint Without Getting Any On Your Hands PPG's Aerospace Coatings Academy is a tool designed to teach everything one needs to know about all>[...]

Airborne 05.02.25: Joby Crewed Milestone, Diamond Club, Canadian Pilot Insurance

Also: Sustainable Aircraft Test Put Aside, More Falcon 9 Ops, Wyoming ANG Rescue, Oreo Cookie Into Orbit Joby Aviation has reason to celebrate, recently completing its first full t>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC