NGC Delivers Advanced F-35 EW Simulation Capability To The Navy | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.24.25

AirborneNextGen-
11.18.25

Airborne-Unlimited-11.19.25

Airborne-AffordableFlyers-11.20.25

AirborneUnlimited-11.21.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Mon, May 14, 2018

NGC Delivers Advanced F-35 EW Simulation Capability To The Navy

To Be Operational Soon At NAWCWD Point Mugu

Preparing the F-35, the U.S. Navy’s most advanced fighter, for missions in today’s complex electromagnetic spectrum environment requires an equally advanced test environment. Northrop Grumman’s multispectral testing solution recreates the most accurate mission-like conditions in the laboratory and on the range. Recently, NAWCWD Point Mugu took delivery of the most sophisticated test environment the company has ever created.

The environment consists of Northrop Grumman’s Combat Electromagnetic Environment Simulator (CEESIM), Signal Measurement System (SMS) and other stimulators, all under control of the Synchronizer Controller System (SCS).

“Keeping the F-35’s systems ready requires a fully integrated test environment like we have developed with CEESIM, SMS and SCS,” said Joe Downie, director, land and avionics C4ISR division, Northrop Grumman Mission Systems. “These systems work together to provide the environment complexity and density, measurement and analysis capability, and test control capability necessary to evaluate the F-35 in a realistic mission scenario.”

At the center of the environment is the CEESIM, which simulates multiple, simultaneous RF emitters as well as static and dynamic platform attributes to faithfully model true-to-war conditions. CEESIM’s Advanced Pulse Generation high speed direct digital synthesizer technology is used to generate realistic electronic warfare mission scenarios.

The SMS provides wide bandwidth signal measurement, recording and analysis capability which is used to validate the test environment and evaluate the system under test performance.

The SCS provides the tools to program an integrated multispectral test scenario, including threat radars, communications signals, radar and EO/IR signatures. The SCS also manages the execution of the scenario by all of the stimulators to ensure a coherent multispectral test environment.

(Image provided with Northrop Grumman news release)

FMI: www.northropgrumman.com

Advertisement

More News

NTSB Prelim: Funk B85C

According To The Witness, Once The Airplane Landed, It Continued To Roll In A Relatively Straight Line Until It Impacted A Tree In His Front Yard On November 4, 2025, about 12:45 e>[...]

Aero-News: Quote of the Day (11.21.25)

"In the frame-by-frame photos from the surveillance video, the left engine can be seen rotating upward from the wing, and as it detaches from the wing, a fire ignites that engulfs >[...]

ANN's Daily Aero-Term (11.21.25): Radar Required

Radar Required A term displayed on charts and approach plates and included in FDC NOTAMs to alert pilots that segments of either an instrument approach procedure or a route are not>[...]

Classic Aero-TV: ScaleBirds Seeks P-36 Replica Beta Builders

From 2023 (YouTube Edition): It’s a Small World After All… Founded in 2011 by pilot, aircraft designer and builder, and U.S. Air Force veteran Sam Watrous, Uncasville,>[...]

Airborne 11.21.25: NTSB on UPS Accident, Shutdown Protections, Enstrom Update

Also: UFC Buys Tecnams, Emirates B777-9 Buy, Allegiant Pickets, F-22 And MQ-20 The NTSB's preliminary report on the UPS Flight 2976 crash has focused on the left engine pylon's sep>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC