Airbus Marks Twenty Years Of X-Ray Astronomy With XMM-Newton | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-12.09.24

Airborne-NextGen-12.10.24

Airborne-Unlimited-12.11.24

Airborne Flt Training-12.05.24

Airborne-Unlimited-12.06.24

Sat, Dec 14, 2019

Airbus Marks Twenty Years Of X-Ray Astronomy With XMM-Newton

ESA Satellite Delivers Sensational Research Results On Exploding Stars, Black Holes And Galaxy Clusters

One of the most successful European space missions is celebrating its birthday: the XMM-Newton X-ray observatory developed and built by Airbus for the European Space Agency (ESA) lifted off at 3:32 p.m. CET on December 10, 1999 to explore the wonders of the X-ray universe. Since its launch, XMM-Newton has simultaneously collected X-rays, visible and ultraviolet light and demonstrated its role as one of the most important astronomical observatories of all time. It has detected more X-ray sources than any previous satellite and is helping solve many cosmic mysteries, from what happens in and around black holes to the formation of galaxies in the early universe.

XMM-Newton has doubled its original deployment period of ten years. Due to the overwhelming scientific success and the telescope’s excellent condition, ESA has extended its mission year on year. Technically, it is quite possible that it will continue to operate beyond 2030.

Interest in conducting observations with the European space telescope remains high. Each year, for example, the requested observation time is up to seven times more than is actually available. The level of this excess demand is on a par with that for the Hubble Space Telescope.

The results of XMM observations also form part of many doctoral theses. These academic works are based both on scientific results (making use of XMM-Newton observations and numerical predictions) and on ‘technical’ work (hardware and software development, calibration or operations). Since the mission’s launch in 1999, almost 400 doctoral theses containing results or findings from the XMM satellite have been produced. In total, over 6,200 scientific ‘XMM papers’ have been published.

However, XMM-Newton is not just an outstanding achievement in scientific terms: bearing in mind that it took just 38 months to complete, management of the satellite project and its technological prowess must also be considered exemplary. The XMM-Newton satellite was built under the leadership of Airbus in Friedrichshafen, with the Attitude and Orbit Control System (AOCS) developed by Airbus U.K., and Airbus in Spain contributing the structures of the service module and the focal plane assembly, and the satellite thermal control system and harness. In total, the industrial consortium comprised 45 European companies and one US company.

XMM-Newton, affectionately named the ‘Black Beauty’ by the engineers who built it on account of its black thermal protective film, consists of three cylindrical mirror systems mounted parallel to each other, enabling X-ray radiation to be concentrated in three focal planes. As a result, celestial bodies can be observed simultaneously with three cameras and two spectrometers. These spectrometers break down the X-ray radiation just as glass prisms split up sunlight into its rainbow colours. From the X-ray ‘colours’ the astronomers can ascertain important physical variables such as temperature, density, relative motion or the chemical composition of matter.

Just like light, X-ray radiation is a form of electromagnetic radiation, but hundreds if not several thousand times more powerful. It is emitted by bodies or gases with temperatures somewhere between a million and 100 million degrees Celsius. In effect, astronomers are using XMM-Newton to observe the hot part of the universe.

XMM-Newton, in its 48-hour orbit, travels nearly one third of the distance to the Moon. At the apogee (furthest point) of 71,000 miles away from the Earth, the satellite travels very slowly. At the perigee (closest point), it passes 4,300 miles above the Earth much faster at 15,000 miles per hour. XMM-Newton’s highly eccentric orbit has been chosen so that its instruments can work outside the radiation belts surrounding the Earth. Since Earth’s atmosphere blocks out all X-rays, only a telescope in space can detect and study celestial X-ray sources.

XMM-Newton ‘targets’ distant X-ray sources for long periods (often for more than 10 hours). One of the key requirements of the satellite was therefore its very high pointing accuracy and stability. XMM-Newton can control its orientation extremely precisely using two sets of four small thrusters and four momentum wheels mounted on the satellite.

The pointing accuracy of the 33-foot long XMM-Newton is 0.25 arcsec over a 10-second interval. This is the equivalent of seeing a melon from a distance of 186 miles, using a hand-held telescope and seeing it without the slightest wobble.

(Image provided with Airbus news release)

FMI: www.airbus.com

Advertisement

More News

ANN's Daily Aero-Term (12.09.24): Altimeter Setting

Altimeter Setting The barometric pressure reading used to adjust a pressure altimeter for variations in existing atmospheric pressure or to the standard altimeter setting (29.92).>[...]

ANN FAQ: Follow Us On Instagram!

Get The Latest in Aviation News NOW on Instagram Are you on Instagram yet? It's been around for a few years, quietly picking up traction mostly thanks to everybody's new obsession >[...]

Aero-News: Quote of the Day (12.09.24)

“As the excitement builds for the world of flight returning to Oshkosh in 2025, we wanted to ensure that advance tickets are available for those who enjoy giving AirVenture t>[...]

ANN FAQ: Submit a News Story!

Have A Story That NEEDS To Be Featured On Aero-News? Here’s How To Submit A Story To Our Team Some of the greatest new stories ANN has ever covered have been submitted by our>[...]

Aero-News: Quote of the Day (12.10.24)

“We’re watching the very nature of warfare change. The speed of technology is absolutely meteoric.” Source: Maj. Gen. Clair Gill, commanding general of the Fort N>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC