Astronauts Examines Training For Extended Deep-Space Missions | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-10.06.25

AirborneNextGen-
10.07.25

Airborne-Unlimited-10.08.25

Airborne-FlightTraining-10.09.25

AirborneUnlimited-10.10.25

Mon, Apr 13, 2015

Astronauts Examines Training For Extended Deep-Space Missions

NASA Investigating Current Methods To Determine If Adaptations Are Necessary

As NASA develops deep space exploration missions on its journey to Mars, the agency is investigating current training methods in order to adapt to the longer and longer missions.

“During the Shuttle Program, astronauts trained about 5 to 8 years for a 10 to 14 day mission, with a work-timeline scripted down to the minute.” says Immanuel Barshi, a research psychologist from NASA’s Ames Research Center in Moffett Field, California, in the center’s Human Systems Integration division.

Decades of crew member research demonstrate that space can have adverse effects on people. Data suggests that the longer humans are in space, the greater the effects. On a trip to Mars, for instance, humans will be exposed to three years of microgravity and radiation; confined in an environment with three to five other people; separated from home; will experience altered day-night/light cycles; and will have three years to inevitably forget some of the training learned before leaving the planet.

Barshi’s research, a study called Training Retention, examines to what extent these aspects of a Mars mission might affect a crew member’s performance, as well as provide fresh insights into the way humans are trained for their jobs on Earth. Working with collaborators at NASA’s Johnson Space Center in Houston, Barshi will study astronaut Scott Kelly’s performance during his one-year mission aboard the International Space Station, in addition to that of other astronauts on six-month missions, and will compare results with astronauts on the ground over the same timeframe.

In conjunction with the Center for Research on Training at the University of Colorado in Boulder, Colorado, Barshi will compare the astronaut skill retention data from space and ground with that of undergraduate students. Much of what is known on how people learn and how well they retain information or skills is based upon university research. Such comparisons are critical to the application of ground assumptions to space operations, especially how the effects of long duration space travel affect crew members.

“Researchers know that skills retained for long periods are very specific, while generalizable skills decay much faster unless continuously practiced,” says Barshi.

For example, a person can learn to enter the numbers 8675309 on a computer keypad extremely fast with excellent accuracy, and retain the skill for a long time. Ask them to do the same task, only this time using a different number sequence and the same person will be just as slow as another person who never practiced the original task. Meaning, it is the specific sequence of numbers that people remember, not the generalizable skill of entering any number.

Results from this study will not only inform choices about astronaut pre-launch, on-board and follow-on training, but they may apply to training requirements for other professional careers. Currently, high risk industries, such as oil drillers, nuclear power plant operators, medical doctors and aircraft pilots or air traffic controllers, set training requirements based upon industry consensus and not necessarily specific research.

“Hopefully we will be able to distinguish whether a shorter interval or longer interval in training works and ask whether we are excessively training people with no added benefit or saved lives, but with added costs and inefficiency,” said Barshi. “And to ask, even more importantly, are we are training people enough?”

(Images provided by NASA. Top: Astronauts Scott Kelly and Kjell Lindgren during International Space Station EVA Maintenance 9 Training at the Neutral Buoyancy Lab at the Sonny Carter Training Facility. Bottom: NASA astronaut Scott Kelly (center) and NASA astronaut Terry Virts participate in an extravehicular activity (EVA) maintenance training session in the Neutral Buoyancy Laboratory near NASA's Johnson Space Center. Crew instructor Sandra Moore assists Kelly and Virts)

FMI: www.nasa.gov

Advertisement

More News

Airborne 10.14.25: Laser Threat, VeriJet BK, Duffy Threatens Problem Controllers

Also: USAF Pilots, Atlanta Tower Evac, Archer Spotlight Dissipates, Hop-A-Jet Sues A social-media call for people to point lasers at aircraft flying over Portland’s ICE facil>[...]

Airborne 10.15.25: Phantom 3500 Confounds, Citation CJ3 Gen2 TC, True Blue Power

Also: Kodiak 100 Joins USFS, Innovative Solutions & Support Renamed, Gulfstream Selects Honeywell, Special Olympics Airlift The Phantom 3500 mockup made an appearance where the>[...]

Aero-News: Quote of the Day (10.17.25)

"On the way back to the United States from NATO’s Defense Ministers meeting, Secretary of War Hegseth’s plane made an unscheduled landing in the United Kingdom due to a>[...]

NTSB Prelim: Piper PA-28-180

Pilot Was Transporting His Family Back To Their Home In Boise And He Planned To Fly Back To SHR That Afternoon On September 1, 2025 about 1612 mountain daylight time, a Piper PA-28>[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC