New ASTM International Standard Supports Parachutes For Drones | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.05.25

Airborne-NextGen-05.06.25

AirborneUnlimited-05.07.25

Airborne-Unlimited-05.01.25

AirborneUnlimited-05.02.25

Thu, Sep 20, 2018

New ASTM International Standard Supports Parachutes For Drones

Provides A Path Of Requirements For Testing And Validation Documentation For A Parachute Recovery System

A new ASTM International standard aims to help meet the need for parachute recovery systems to increase safety when operating small Unmanned Aircraft Systems (sUAS), commonly known as drones.

The new standard provides a path of requirements for testing and validation documentation for a parachute recovery system (PRS).  According to members of the ASTM International UAS committee (F38), this could help a drone operator seek approval from a civil aviation authority to fly small drones over people.

Specifically, the standard defines the design, fabrication, and test requirements of installable, deployable PRS integrated into a drone to lessen the impact energy of the system should it fail to sustain normal, stable, safe flight. The standard applies to multi-rotor, single-rotor, hybrid, vertical takeoff/landing (VTOL), or fixed-wing drones.

The standard will soon be published as F3322.

According to ASTM International member Alan Erickson, CTO, Indemnis, Inc. and the technical contact on the committee, the new standard creates a framework for the entity that integrates the parachute components, the drone itself, and the testing of the entire system. This entity can be the PRS manufacturer, the drone manufacturer, or the person trying to get permission from a civil aviation authority to fly a drone over people.

“The standard includes a rigorous design and testing matrix due to the simple fact that a PRS may be the only failsafe in a critical system failure,” says Erickson. “When applied correctly, a PRS will enable industry growth in a way that provides civil aviation authorities and civilian populations with a high level of confidence in sUAS.”

(Source: ASTM news release. Image from file)

FMI: www.astm.org

Advertisement

More News

ANN's Daily Aero-Term (05.05.25): Circle To Runway (Runway Number)

Circle To Runway (Runway Number) Used by ATC to inform the pilot that he/she must circle to land because the runway in use is other than the runway aligned with the instrument appr>[...]

ANN's Daily Aero-Linx (05.05.25)

Aero Linx: National Aviation Safety Foundation (NASF) The National Aviation Safety Foundation is a support group whose objective is to enhance aviation safety through educational p>[...]

NTSB Prelim: De Havilland DHC-1

At Altitude Of About 250-300 Ft Agl, The Airplane Experienced A Total Loss Of Engine Power On November 6, 2024, at 1600 central standard time, a De Havilland DHC-1, N420TD, was inv>[...]

Classic Aero-TV: The Boeing Dreamliner -- Historic First Flight Coverage

From 2009 (YouTube Edition): Three Hour Flight Was 'Flawless' -- At Least, Until Mother Nature Intervened For anyone who loves the aviation business, this was a VERY good day. Afte>[...]

Airborne-NextGen 05.06.25: AF Uncrewed Fighters, Drones v Planes, Joby Crew Test

Also: AMA Names Tyler Dobbs, More Falcon 9 Ops, Firefly Launch Unsuccessful, Autonomous F-16s The Air Force has begun ground testing a future uncrewed jet design in a milestone tow>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC