Chandra Revealing Clues To 'Big-Bang' Puzzle | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-02.03.25

Airborne-NextGen-02.04.25

Airborne-Unlimited-02.05.25

Airborne-FlightTraining-02.06.25

Airborne-Unlimited-02.07.25

Tue, Nov 18, 2003

Chandra Revealing Clues To 'Big-Bang' Puzzle

Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang

The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light-years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago.

The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no GB1508+ indication in previous images of any complex structure or a jet.

"This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the big bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20 Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the big bang.

Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe.

When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions,"
said Siemiginowska. "This jet is hopefully just the first in a large sample of these distant objects that can be used to tell us how the intensity of the cosmic microwave background changed over time."

"In fact, if this interpretation is correct, then discovery of this jet is consistent with our previous prediction that X-ray jets can be detected at arbitrarily large distances!" said team member Dan Schwartz, also of the Harvard-Smithsonian Center for Astrophysics.

Chandra originally observed GB 1508+5714 with the purpose of studying the X-ray emission from the dust located between the Earth and the far-flung quasar. The jet was found by Siemiginowska and her colleagues when they examined the data once it became available publicly in the Chandra archive. This led another astronomer to then carefully look at radio observations of the object. Indeed, archived Very Large Array data confirmed the existence of the jet associated with the quasar GB 1508+5714.  A paper on the radio observations of GB 1509+5714 has been accepted by Astrophysical Journal Letters from Teddy Cheung of Brandeis University in Waltham, Mass.

Another group of astronomers led by Weimin Yuan of the University of Cambridge, United Kingdom, independently reported the discovery of the extended emission in GB 1508+5714 in X-rays. In a paper to be published in an upcoming issue of the Monthly Notices of the Royal Astronomical Society, the authors note that significant energy is being deposited in the outer regions of the host galaxy at a very early stage. This energy input could have a profound effect on the evolution of the galaxy by triggering the formation of stars, or inhibiting the growth of the galaxy through accretion of matter from intergalactic space.

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington.

FMI: http://chandra.nasa.gov, http://chandra.harvard.edu

Advertisement

More News

ANN's Daily Aero-Term (02.08.25): Radar Flight Following

Radar Flight Following The observation of the progress of radar-identified aircraft, whose primary navigation is being provided by the pilot, wherein the controller retains and cor>[...]

ANN's Daily Aero-Linx (02.08.25)

Aero Linx: Army Aviation Medicine Association (AAVMA) The Army Aviation Medicine Association is the subset of members of the SoUSAFS that are also members of the Aerospace Medical >[...]

Aero-News: Quote of the Day (02.09.25)

“We are very pleased to enter into this MoU agreement with Gogo, especially as we aim to offer our Airbus ACJ operators and business leaders the highest standard connectivity>[...]

ANN's Daily Aero-Term (02.09.25): Tactical Air Navigation (TACAN)

Tactical Air Navigation (TACAN) An ultra-high frequency electronic rho-theta air navigation aid which provides suitably equipped aircraft a continuous indication of bearing and dis>[...]

Airborne-NextGen 02.04.25: Dream Chaser, Drone Pilot Busted, Asteroid Samples

Also: New Acting FAA Boss, Matternet M2 Drone Ops, Serbian Midnights, NOTAM Foulup Sierra Space announced that its Dream Chaser spaceplane successfully completed the Joint Test 10B>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC