Boeing Says Test 'Breakthrough' Means More Reliable Connectivity On Airplanes | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Thu, Dec 20, 2012

Boeing Says Test 'Breakthrough' Means More Reliable Connectivity On Airplanes

Potato Test Yields More Comprehensive Evaluation For Safety Standards, Clears Way For Better In-Cabin Signals

An advanced method to test wireless signals in airplane cabins has been developed by Boeing, making it possible for passengers to enjoy more reliable connectivity when using networked personal electronic devices in the air. Boeing engineers created a new process for measuring radio signal quality using proprietary measurement technology and analysis tools. This enables engineers to more efficiently measure how strong a signal is and how far it spreads, ensuring safe yet powerful signal penetration throughout an airplane cabin.

Once the new method was established, testing that previously took more than two weeks to conduct was reduced to 10 hours. "Every day we work to ensure that Boeing passengers are travelling on the safest and most advanced airplanes in the world," said Dennis O'Donoghue, vice president of Boeing Test & Evaluation. "This is a perfect example of how our innovations in safety can make the entire flying experience better."

This technology was first developed to more thoroughly and efficiently ensure that signal propagation met the regulatory safety standards that protect against interference with an aircraft's critical electrical systems.

Initially using a de-commissioned airplane, the team from Boeing Test & Evaluation laboratories conducted a series of such tests. The team determined that potatoes were ideal stand-ins for passengers, given their similar physical interactions with electronic signal properties. Much of the testing was conducted on the grounded airplane with the seats filled with 20,000 pounds of potato sacks. The test data was then validated on the ground with human stand-ins for passengers.

A wireless signal inside an airplane can deviate randomly when people move around. Boeing's new test process takes advantage of state-of-the-art technology and ground-breaking statistical analysis to identify strong and weak signal areas and balance them by adjusting the connectivity system accordingly. The result, Boeing says, is increased safety and reliability.

FMI: www.boeing.com

 


Advertisement

More News

Sierra Space Repositions Dream Chaser for First Mission

With Testing Soon Complete, Launch Preparations Begin in Earnest Sierra Space's Dream Chaser has been put through the wringer at NASA's Glenn Armstrong Test Facility in Ohio, but w>[...]

ANN's Daily Aero-Term (05.10.24): Takeoff Roll

Takeoff Roll The process whereby an aircraft is aligned with the runway centerline and the aircraft is moving with the intent to take off. For helicopters, this pertains to the act>[...]

Aero-News: Quote of the Day (05.10.24)

“We’re proud of the hard work that went into receiving this validation, and it will be a welcome relief to our customers in the European Union. We couldn’t be mor>[...]

Aero-News: Quote of the Day (05.11.24)

"Aircraft Spruce is pleased to announce the acquisition of the parts distribution operations of Wag-Aero. Wag-Aero was founded in the 1960’s by Dick and Bobbie Wagner in the >[...]

ANN's Daily Aero-Term (05.11.24): IDENT Feature

IDENT Feature The special feature in the Air Traffic Control Radar Beacon System (ATCRBS) equipment. It is used to immediately distinguish one displayed beacon target from other be>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC