Charles River Analytics Develops Satellite Image Processing System For NASA | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-10.06.25

AirborneNextGen-
10.07.25

Airborne-Unlimited-10.08.25

Airborne-FlightTraining-10.09.25

AirborneUnlimited-10.10.25

Sun, Jan 12, 2014

Charles River Analytics Develops Satellite Image Processing System For NASA

DIPSARS Detects Large-Scale Environmental Events From Satellite Imagery

Charles River Analytics has been awarded a contract to develop a system for NASA. The system known as DIPSARS, for the Discovery of Interesting Patterns and Semantic Analysis in Remote Space, detects large-scale environmental events from satellite imagery. These events include volcanic eruptions, storms, and algae blooms, captured in images such as those produced from the NASA Earth Observing-1 (EO-1) satellite, as illustrated here.

The volume of satellite and rover data collected by NASA has grown dramatically as new missions are launched with ever-increasing sensor payloads. The data to be processed by DIPSARS includes different scenes and objects that research scientists and mission controllers use to determine which areas should be explored further. The sheer volume of data, combined with bandwidth limitations, is driving a need to process and analyze which data is relevant, important, and interesting enough to prompt follow-on action, all in real-time onboard the spacecraft.

DIPSARS leverages Charles River’s Object Detection Framework (ODF), a capability developed over several years to address the computer vision market. The ODF is a generalized detection framework that can detect objects and phenomena in image data in real-time. “DIPSARS will expand the use of our state-of-the art detection framework to new platforms and data,” said Tom Moore, the lead software engineer for the project.

“We’re excited by the potential of this project to enable autonomous decisions by satellites, resulting in fewer missed opportunities to observe significant events,” said Daniel Stouch, Principal Investigator on the project. “It will also free up valuable communications bandwidth that can then be used to transmit data of interest back to NASA and the research community in a more timely fashion.”

(Images provided by Charles River Analytics)

FMI: www.cra.com

Advertisement

More News

Aero-News: Quote of the Day (10.16.25)

“This integration marks a significant step forward in cockpit connectivity and safety. It is one of few solutions offered to business aviation and rotorcraft operators that p>[...]

Airborne 10.15.25: Phantom 3500 Confounds, Citation CJ3 Gen2 TC, True Blue Power

Also: Kodiak 100 Joins USFS, Innovative Solutions & Support Renamed, Gulfstream Selects Honeywell, Special Olympics Airlift The Phantom 3500 mockup made an appearance where the>[...]

ANN's Daily Aero-Term (10.16.25): Enhanced Flight Vision System (EFVS)

Enhanced Flight Vision System (EFVS) An EFVS is an installed aircraft system which uses an electronic means to provide a display of the forward external scene topography (the natur>[...]

True Blue Power and Mid-Continent Instruments and Avionics Power NBAA25 Coverage

Mid-Continent Instruments and Avionics and True Blue Power ANN's NBAA 2025 Coverage... Visit Them At Booth #3436 True Blue Power Unveils 50 Amp-hour Lithium-ion, Main Ship Battery >[...]

NTSB Final Report: Bellanca 17-30A

Shortly After Takeoff, The Engine Completely Lost Power Analysis: The pilot reported that the engine start, run-up, and takeoff were without incident. However, shortly after takeof>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC