New Upper Stage Engine Ready For Testing | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-11.10.25

AirborneNextGen-
11.11.25

Airborne-Unlimited-11.12.25

Airborne-Unlimited-11.06.25

AirborneUnlimited-11.07.25

LIVE MOSAIC Town Hall (Archived): www.airborne-live.net

Wed, Jun 15, 2011

New Upper Stage Engine Ready For Testing

J-2X Rocket Engine Will Be Subjected To 10 Test Firings At NASA's Stennis Space Center

NASA's new J-2X rocket engine, which could power the upper stage of the nation's future heavy-lift launch vehicle, is ready for its first round of testing. The fully assembled engine was installed Saturday in the A-2 Test Stand at the agency's Stennis Space Center in Mississippi. Beginning in mid-June, the engine will undergo a series of 10 test firings that will last several months.


Artist's Rendering J-2X Engine

"An upper stage engine is essential to making space exploration outside low-Earth orbit a reality," said Mike Kynard, manager of the J-2X upper stage engine project at NASA's Marshall Space Flight Center in Huntsville, Ala. "The J-2X goes beyond the limits of its historic predecessor and achieves higher thrust, performance, and reliability than the J2. We are thrilled to have the engine in the test stand to validate our assumptions about engine performance and reliability."

The test stand, which supported the space shuttle main engine project, has been modified to accommodate the J-2X engine's different shape. In addition to the structural, electrical and plumbing modifications, a new engine start system was installed and control systems were upgraded on the stand. The liquid oxygen and liquid hydrogen transfer lines that dated back to the 1960s were replaced.

Fueled by liquid oxygen and liquid hydrogen, the J-2X engine will generate 294,000 pounds of thrust in its primary operating mode to propel a spacecraft into low-Earth orbit.


Stennis A-2 Test Stand

By changing the mixture ratio of liquid oxygen to liquid hydrogen, the J–2X can operate in a secondary mode of 242,000 pounds of thrust required to power a spacecraft from low-Earth orbit to the moon, an asteroid or other celestial destination. The J-2X can start and restart in space to support a variety of mission requirements. "We are excited to have a new engine in the A-2 Test Stand," said Gary Benton, manager of the J-2X engine testing project at Stennis. "Installation of the J-2X engine marks the beginning of the third major rocket engine test project on this historic stand."

The A-2 Test Stand originally was used to test Saturn V rocket stages for NASA's Apollo Program. In the mid-1970s, the stand was modified from Apollo Program parameters to allow testing of space shuttle main engines.

FMI: www.nasa.gov/mission_pages/j2x/

Advertisement

More News

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

Classic Aero-TV: Bob Hoover At Airventure -- Flight Test and Military Service

From 2011 (YouTube Edition): Aviation's Greatest Living Legend Talks About His Life In Aviation (Part 5, Final) ANN is pleased to offer you yet another snippet from the public conv>[...]

Aero-News: Quote of the Day (11.12.25)

“All Air Traffic Controllers must get back to work, NOW!!! Anyone who doesn’t will be substantially ‘docked. For those Air Traffic Controllers who were GREAT PATR>[...]

ANN's Daily Aero-Linx (11.12.25)

Aero Linx: American Navion Society Welcome to the American Navion Society. Your society is here to support the Navion community. We are your source of technical and operating infor>[...]

ANN's Daily Aero-Term (11.12.25): Glideslope Intercept Altitude

Glideslope Intercept Altitude The published minimum altitude to intercept the glideslope in the intermediate segment of an instrument approach. Government charts use the lightning >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC