U.S. Army Flies Autonomous Black Hawk Helicopter | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 10.01.14 ** HD iPad-Friendly -- Airborne 10.01.14 **
** Airborne 09.29.14 ** HD iPad-Friendly -- Airborne 09.29.14 **
** Airborne 09.26.14 ** HD iPad-Friendly -- Airborne 09.26.14 **

Mon, Dec 10, 2012

U.S. Army Flies Autonomous Black Hawk Helicopter

First Test Flight Had Pilots Aboard For Safety

Over the skies east of San Jose, CA, a Black Hawk helicopter was seen flying low and slow November 5. There were pilots aboard the aircraft, but all maneuvers during this flight were being conducted autonomously.

The U.S. Army Research, Development and Engineering Command's Aviation and Missile Center successfully demonstrated low-level autonomous behaviors in a flight over the Diablo Range. This demonstration is critical to the next generation of technological advances in military rotorcraft: obstacle field navigation and safe landing area determination.

Terrain sensing, statistical processing, risk assessment, threat avoidance, trajectory generation, and autonomous flight control were performed in real-time during the two-hour test flight. "This was the first time terrain-aware autonomy has been achieved on a Black Hawk," said Lt. Col. Carl Ott, chief of the Flight Projects Office at AMRDEC's Aero Flight Dynamics Directorate.
 
Testing was conducted on the Rotorcraft Aircrew Systems Concept Airborne Laboratory, or  RASCAL, a JUH-60A Black Hawk equipped with the H.N. Burns 3D-LZ laser detection and ranging system for terrain sensing. "The RASCAL aircraft was the ideal platform to demonstrate this technology. It provides a fully programmable, fly-by-wire flight control system and [has] advanced sensor interfaces for rapid prototyping of new concepts while maintaining the standard UH-60 hydro-mechanical flight control system as a safety backup," said Jay Fletcher, RASCAL project manager.
 
Throughout the flight, the aircraft maintained an altitude of 200 and 400 feet above ground. During the final obstacle of the field navigation flight, the safe landing area determination algorithm autonomously identified a safe landing spot within a forest clearing and commanded the aircraft to approach and hover at 60 feet.

Final hover was accurate within a foot.
 
"A risk-minimizing algorithm was used to compute and command a safe trajectory continuously throughout 23 miles of rugged terrain at an average speed of 40 knots," said Matthew Whalley, the Autonomous Rotorcraft Project lead. "No prior knowledge of the terrain was used."
 
Crew members on the historic flight were Army experimental test pilots Lt. Col. Mike Olmstead and Ott, RASCAL system operator Dennis Zollo, and Dr. Marc Takahashi.

FMI: www.army.mil

Advertisement

More News

AeroSports Update: 38th World Military Parachuting Championship

Countries From Around The World Participated In The 38th World Military Parachuting Championship Competition In Indonesia The competition is part of a program administered through >[...]

ANN's Daily Aero-Linx (10.01.14)

NBAA/CAN Soiree One of the much-anticipated events of the NBAA conference, being held this year in Orlando.>[...]

ANN's Daily Aero-Term (10.01.14): Fixed Slot

A fixed, nozzle shaped opening near the leading edge of a wing that ducts air onto the top surface of the wing.>[...]

Aero-News: Quote Of The Day (10.01.14)

“SNC is offering access to crewed or uncrewed space missions." Source: John Roth, vice president of business development for SNC’s Space Systems.>[...]

ANN FAQ: Feel The Propwash!

Get Aero-News Delivered To Your E-Mail We know you, like many of our readers, make it a point to check out the latest news and information daily on Aero-News... but did you know th>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC