First Instrument Delivered For NASA’s Upcoming Asteroid Sample Return Mission | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Mon, Jul 06, 2015

First Instrument Delivered For NASA’s Upcoming Asteroid Sample Return Mission

Thermal Emission Spectrometer Will Map Mineral And Chemical Levels, Temperature On Asteroid Bennu

The first of five instruments for a spacecraft that will collect a sample from an asteroid and bring it back to Earth has arrived at Lockheed Martin for installation onto NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx).

“The next few months will be very busy as we begin integrating the instruments and prepare for the system-level environmental testing program to begin,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The OSIRIS-REx Thermal Emission Spectrometer (OTES) will conduct surveys to map mineral and chemical abundances and to take the asteroid Bennu’s temperature. OTES is the first such instrument built entirely on the Arizona State University (ASU), Tempe campus.

“OTES, the size of a microwave oven, has spent the last several years being designed, built, tested, and calibrated,” said Philip Christensen, OTES instrument scientist at ASU. "Now, OTES is shipping out for the solar system.”

The instrument will be powered on shortly after the OSIRIS-REx spacecraft begins its two-year trip to Bennu. On arrival at Bennu, OTES will provide spectral data for global maps used to assess potential sample sites. It will take thermal infrared spectral data every two seconds and will be able to detect temperatures with an accuracy of 0.2°F. It will also detect the presence of minerals on the asteroid’s surface.

OSIRIS-REx is the first U.S. mission to fly to, study, and retrieve a pristine sample from an asteroid and return it to Earth for study.

Scheduled to launch in September 2016, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023.

The mission will allow scientists to investigate the composition of material from the very earliest epochs of solar system history, providing information about the source of organic materials and water on Earth.

“It is a significant milestone to have OSIRIS-REx’s first instrument completed and delivered for integration onto the spacecraft,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “The OTES team has done an excellent job on the instrument and I deeply appreciate their scientific contribution to the mission. OTES plays an essential role in characterizing the asteroid in support of sample-site selection.”

(Images provided by NASA)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (05.02.24)

Aero Linx: Model Aeronautical Association of Australia MAAA clubs are about fun flying, camaraderie and community. For over 75 years, the MAAA has been Australia’s largest fl>[...]

ANN's Daily Aero-Term (05.02.24): Touchdown Zone Lighting

Touchdown Zone Lighting Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet alon>[...]

Aero-News: Quote of the Day (05.02.24)

“Discovery and innovation are central to our mission at Virgin Galactic. We’re excited to build on our successful record of facilitating scientific experiments in subor>[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

NTSB Final Report: Cirrus Design Corp SR20

Student Pilot Reported That During Rotation, “All Of A Sudden The Back Of The Plane Kicked To The Right..." Analysis: The student pilot reported that during rotation, “>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC