Towed Twin-Fuselage Glider Launch System First Test Flight Successful | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

Airborne Unlimited-
Monday

Airborne Unmanned-
Alt. Wednesdays

Airborne Flight Training-Alt. Wednesdays

Airborne Unlimited-
Friday

Airborne Special Programs!
Airborne-YouTube  Airborne Unlimited--08.03.20 Airborne-Unmanned--08.05.20   NEW! Airborne-Flight Training--07.29.20 Airborne Unlimited--08.07.20  The 2020 Avionics Innovation Preview!

Airborne On ANN

Airborne Unlimited--08.03.20

Airborne-Unmanned--08.05.20

NEW! Airborne-Flight Training--07.29.20

Airborne Unlimited--08.07.20

Airborne's Annual April 1st Episode

Mon, Jan 26, 2015

Towed Twin-Fuselage Glider Launch System First Test Flight Successful

Scale Model Of Pilotless Aircraft That Could Eventually Launch Small Satellites

NASA has successfully flight-tested a prototype twin-fuselage towed glider that could lead to rockets being launched from pilotless aircraft at high altitudes – a technology application that could significantly reduce the cost and improve the efficiency of sending small satellites into space. The first flights of the one-third-scale twin fuselage towed glider took place Oct. 21 from NASA's Armstrong Flight Research Center in California.

The towed glider is an element of the novel rocket-launching concept of the Towed Glider Air-Launch System, or TGALS. NASA Armstrong researchers are developing the project, which is funded as a part of the Space Technology Mission Directorate's Game Changing Development program.

The 27-foot-wingspan towed glider was towed behind the Dryden Remotely Operated Integrated Drone, or DROID, unmanned aircraft into the blue skies above Edwards Air Force Base. Minutes later the towline was released and the twin fuselage aircraft glided to a perfect landing on the dry lakebed.
After reviewing wind conditions and checking the systems of both aircraft, mission managers decided to go for a second flight. As with the first, the glider was towed behind the DROID, leveled out in flight and the glider was released for another free flight to the dry lakebed.
"We had a really good first flight," said John Kelly, TGALS project manager. "Both aircraft performed well."

"It flies fantastic," said Robert "Red" Jensen (pictured, below, standing), who piloted the dual-fuselage glider. "There were no squawks."

The goal is to build confidence with the aircraft and with tow operations before the final element – an experimental rocket payload – is mated with the glider and ultimately launched from the glider after its release from the DROID.

Gerald Budd, who for about three years has conceptualized and sought funding for the concept, piloted the DROID during the test flight and was pleased that the project had a successful first test flight. "It was surreal to watch it fly after all work it took to get here," Budd said.

If the project continues to succeed, Budd believes the ultimate goal would be to build a relatively inexpensive remotely or optionally piloted glider that will be towed aloft by a transport aircraft. Following release at about 40,000 feet, the glider would launch a booster rocket into an optimal trajectory to place its payload into low Earth orbit.

The glider was built primarily with commercial-off-the-shelf components, but some parts were manufactured at NASA Armstrong’s Fabrication Branch. Assembly was accomplished in NASA Armstrong's Small Unmanned Aircraft Systems Research Lab, or model shop. In January, flights confirmed that towing and releasing a single-fuselage version of the aircraft by the DROID tow plane functioned as expected. The recent flights confirmed the dual-fuselage version also is airworthy.

TGALS chief engineer Ryan Dibley said using two commercial-off-the-shelf glider halves and joining them together with a center wing structure created challenges. While the center wing section was built in-house and was designed specifically for this mission, the outer wing sections were built for the standard single-fuselage glider without the additional weight. "One of the concerns was we didn't know what the outer wing sections were made of, how they were constructed, or what kind of loads they could take," Dibley said. "We performed a loads test in NASA Armstrong’s Flight Loads Lab where we cleared the structure up to 2 gs to ensure that the wings could handle the loads of the glider itself and then with a partial mass payload. In the near future, we will put a wing back in the loads lab and test it to the loads required to carry the full payload."

The system will eventually carry the scale-model Mini Sprite rocket, designed and built by Whittinghill Aerospace of Camarillo, California, under NASA’s Small Business Innovation Research program.

Initial research and development was internally funded at NASA Armstrong through the Center Innovation Fund. Potential U.S. Department of Defense and industry partners are sought for future phases. David Voracek, NASA Armstrong chief technologist, said he is pleased to see a project that was in the Center Innovation Fund sprout wings and fly in another NASA program. "I am happy to see that STMD is funding this for the next year under the Game Changing Development Program," Voracek said. "We need to keep developing innovative technologies here at Armstrong that can be picked up by the NASA mission directorates or industry. I am looking forward to seeing this project continue to fly, especially when we put a rocket on the glider and get a launch off in the next year or so. The whole team came together and made the flight happen. It has been a long time in coming."

(Images provided by NASA)

FMI: www.nasa.gov

Advertisement

More News

Liberty U Offers New Aviation Bachelor's, Master's Degrees

Many Major Commercial And Cargo Airlines Require Pilots To Have A Four-Year Degree Liberty University School of Aeronautics (LUSOA) has added two degrees to its growing academic of>[...]

Aero-News: Quote of the Day (08.04.20)

“I have to do a call out to the great SpaceX team; they did extraordinary work. This was an incredibly smooth mission. This was an extraordinary mission, an extraordinary day>[...]

Airborne 08.03.20: Splashdown!, USN Black Female TACAIR Plt, New Wagstaff Course

Also: Boeing Will Remember 2020, 2020 Skydiving Nationals Cancelled, Swedish Medevac PC-24, More Reductions For Gogo Two NASA astronauts splashed down safely in the Gulf of Mexico >[...]

Aero-News: Quote of the Day (08.05.20)

"As a recognized innovator in the general aviation segment, Aspen's inclusion in the AIRO Group's diversified company portfolio not only helps strengthen Aspen Avionics current bus>[...]

ANN's Daily Aero-Term (08.05.20): Coupled Approach

Coupled Approach An instrument approach performed by the aircraft autopilot, and/or visually depicted on the flight director, which is receiving position information and/or steerin>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2020 Web Development & Design by Pauli Systems, LC