Construction To Begin On NASA Mars Lander Scheduled For 2016 Launch | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

Airborne Unlimited-
Monday

Airborne Unmanned-
Alt. Wednesdays

Airborne Flight Training-Alt. Wednesdays

Airborne Unlimited-
Friday

Airborne Special Programs!
Airborne-YouTube Airborne Unlimited--11.23.20 Airborne-Unmanned--11.18.20   Airborne-Flight Training--11.04.20 Airborne Unlimited--11.20.20  The 2020 Avionics Innovation Preview!

Airborne On ANN

Airborne Unlimited--11.23.20

Airborne-Unmanned--11.18.20

Airborne-Flight Training--11.04.20

Airborne Unlimited--11.20.20

Airborne's Annual April 1st Episode

Tue, May 27, 2014

Construction To Begin On NASA Mars Lander Scheduled For 2016 Launch

Mission Critical Design Review Completed

NASA and its international partners now have the go-ahead to begin construction on a new Mars lander after it completed a successful Mission Critical Design Review.

NASA’s Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport (InSight) mission will pierce beneath the Martian surface to study its interior. The mission will investigate how Earth-like planets formed and developed their layered inner structure of core, mantle and crust, and will collect information about those interior zones using instruments never before used on Mars.

InSight will launch from Vandenberg Air Force Base, on the central California coast near Lompoc, in March 2016. This will be the first interplanetary mission ever to launch from California. The mission will help inform the agency’s goal of sending a human mission to Mars in the 2030s.

InSight team leaders presented mission-design results last week to a NASA review board, which approved advancing to the next stage of preparation.

“Our partners across the globe have made significant progress in getting to this point and are fully prepared to deliver their hardware to system integration starting this November, which is the next major milestone for the project," said Tom Hoffman, InSight Project Manager of NASA's Jet Propulsion Laboratory (JPL), Pasadena, California. "We now move from doing the design and analysis to building and testing the hardware and software that will get us to Mars and collect the science that we need to achieve mission success."

To investigate the planet's interior, the stationary lander will carry a robotic arm that will deploy surface and burrowing instruments contributed by France and Germany. The national space agencies of France and Germany -- Centre National d’Etudes Spatiales (CNES) and Deutsches Zentrum für Luft- und Raumfahrt (DLR) -- are partnering with NASA by providing InSight's two main science instruments.

The Seismic Experiment for Interior Structure (SEIS) will be built by CNES in partnership with DLR and the space agencies of Switzerland and the United Kingdom. It will measure waves of ground motion carried through the interior of the planet, from "marsquakes" and meteor impacts. The Heat Flow and Physical Properties Package, from DLR, will measure heat coming toward the surface from the planet's interior.

"Mars actually offers an advantage over Earth itself for understanding how habitable planetary surfaces can form," said Bruce Banerdt, InSight Principal Investigator from JPL. "Both planets underwent the same early processes. But Mars, being smaller, cooled faster and became less active while Earth kept churning. So Mars better preserves the evidence about the early stages of rocky planets' development."

The three-legged lander will go to a site near the Martian equator and provide information for a planned mission length of 720 days -- about two years. InSight adapts a design from the successful NASA Phoenix Mars Lander, which examined ice and soil on far-northern Mars in 2008.

"We will incorporate many features from our Phoenix spacecraft into InSight, but the differences between the missions require some differences in the InSight spacecraft," said InSight Program Manager Stu Spath of Lockheed Martin Space Systems Company, Denver, Colorado. "For example, the InSight mission duration is 630 days longer than Phoenix, which means the lander will have to endure a wider range of environmental conditions on the surface."

Guided by images of the surroundings taken by the lander, InSight's robotic arm will place the seismometer on the surface and then place a protective covering over it to minimize effects of wind and temperature on the sensitive instrument. The arm will also put the heat-flow probe in position to hammer itself into the ground to a depth of 3 to 5 yards.

Another experiment will use the radio link between InSight and NASA's Deep Space Network antennas on Earth to precisely measure a wobble in Mars' rotation that could reveal whether Mars has a molten or solid core. Wind and temperature sensors from Spain's Centro de Astrobiologia and a pressure sensor will monitor weather at the landing site, and a magnetometer will measure magnetic disturbances caused by the Martian ionosphere.

(Image provided by NASA)

FMI: http://insight.jpl.nasa.gov, www.nasa.gov/mars

Advertisement

More News

ANN's Daily Aero-Linx (11.23.20)

Aero Linx: The Canadian Sport Parachuting Association (CSPA) The Canadian Sport Parachuting Association (CSPA), through affiliation with the Aero Club of Canada (ACC), is Canada&rs>[...]

Klyde Morris (11.23.20)

Klyde Knows That Even An Airplane Can't Help You Escape The Pandemic... FMI: www.klydemorris.com>[...]

Aero-News: Quote of the Day (11.23.20)

“What the team achieved today in recovering Electron’s first stage is no mean feat. It took a monumental effort from many teams across Rocket Lab, and it’s exciti>[...]

Airborne-Unmanned 11.18.20: DJI AGRAS T20, DoT BEYOND, Workhorse TC App

Also: Autel and DroneSense, Pennsylvania CAP Wing, Airspace Link, Beringer Aero DJI is aiming at the farming market with its latest agriculture drone, the DJI AGRAS T20. This agric>[...]

Aero-News: Quote of the Day (11.24.20)

"The development of airworthy, durable, and reliable unmanned aircraft is a crucial step forward for this innovative sector. Type certification will help increase both public and r>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2020 Web Development & Design by Pauli Systems, LC