USHST Report Touts Automatic Flight Control Systems in Light Helicopters | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

Airborne Unlimited-Monday

Airborne Unmanned

Airborne Unlimited-Tuesday Airborne Special Edition Airborne Flight Training

Airborne Unlimited-
Friday

Airborne-ANN Airborne Unlimited--04.05.21 Airborne-Unmanned--04.06.20 Airborne Unlimited--04.07.21 Airborne Special Edition--04.01.21 Airborne-Flight Training--04.08.20 Airborne Unlimited--04.09.21

Airborne On YouTube

Airborne Unlimited--04.05.21

Airborne-Unmanned--04.06.20

Airborne Unlimited--04.07.21 Airborne Special Edition--04.01.21 Airborne-Flight Training--04.08.20

Airborne Unlimited--04.09.21

Thu, Mar 04, 2021

USHST Report Touts Automatic Flight Control Systems in Light Helicopters

'Most Part 27 Aircraft Are Not Equipped With Even The Most Basic Stabilization Systems'

As a result of its comprehensive analysis of fatal helicopter accidents, the U.S. Helicopter Safety Team determined that loss of control while inflight has been a leading factor in accident causes, especially involving light helicopters.

Current light helicopters have flight characteristics that are challenging and demanding of pilot workload. In response, the USHST is moving forward with some first steps to increase safety by encouraging the development and installation of stability augmentation systems and autopilot devices that increase the flight stability of light helicopters.

"If light helicopters operating under visual flight rules could be enhanced to meet some of the instrument flight rule stability requirements, many loss-of-control accidents could be avoided," explains Nick Mayhew, industry co-chair of the U.S. Helicopter Safety Team. "Aircraft stability would help a pilot maintain positive aircraft control during temporary losses of visual cueing or disorientation."

Transport vs. Light Rotorcraft: Automatic flight control systems have been successfully integrated into transport category (Part 29) helicopters for more than 30 years and have proven their effectiveness and safety for flight in low visibility and instrument meteorological conditions.  However, most of these systems are too complex or heavy to integrate into Part 27 helicopters, particularly single-engine models.  Consequently, these smaller rotorcraft lack the operational capability and inherent safety that autopilot systems provide. This restricts such aircraft from operating under instrument flight rules and results in more frequent flights under VFR conditions in the midst of poor visibility and low ceilings. 

Since most Part 27 aircraft are not equipped with even the most basic stabilization systems, they remain more susceptible to loss of control. This could occur when operations are conducted under marginal visual flight rules, when a pilot encounters unintended flight into instrument meteorological conditions or when a pilot becomes spatially disoriented.

New Pathway: In response to this situation, the USHST is presenting a new Recommended Practices document, "Automatic Flight Control Systems in Light Helicopters," (https://ushst.org/loss-of-control/). It provides wide-ranging information about automatic flight control functionality and performance, including:

  • Stability Augmentation
  • Auto-Land
  • Basic Coupled Modes and IFR Coupled Modes
  • Hover-Assist
  • Envelope Protection
  • Automatic Hover Departure
  • Level or Save Me Mode
  • Autorotation Assistance

New Tech: In addition, the paper offers an extensive look at the current and new stability augmentation and autopilot technology, including:

  • Systems currently offered by rotorcraft manufacturers
  • Systems offered by outside 3rd party vendors

Integration of UAS and eVTOL stabilization technology and their safety enhancing features such as:

  • Self-Leveling in Flight or at Hover,
  • Altitude Hold,
  • Automatic Roll and Yaw Control,
  • Omnidirectional Collision Avoidance, etc.

"With the increasing maturity of existing technology and the emergence of new technologies commonly used beyond the aerospace industry," adds Mayhew, "it may be possible to find automatic flight control system solutions that achieve sufficient stability and reliability through low-cost/low-weight systems. Working together, we can find these solutions and enhance safety."

FMI: www.USHST.org, www.IHSF.aero

Advertisement

More News

Rocket Lab Will Attempt Electron Booster Recovery on Next Mission

Rocket Lab Hopes to Make 'Electron' The First Reusable Orbital Small Launch Vehicle Rocket Lab reports that on its next mission the company will attempt to bring a rocket back from>[...]

Airborne 04.09.21: Skyleader 600, UPS Commits To eVTOL, F-15EX 'Eagle II'

Also: Western Global Pilots, Tamarack Touts Aiken, Metro Delivers EC145E, FRASCA On TH-73A Program One of the new aircraft you might see at Sun ‘n Fun next week is an excepti>[...]

ANN's Daily Aero-Term (04.09.21): ODALS-Omnidirectional Approach Lighting System

ODALS-Omnidirectional Approach Lighting System Consists of seven omnidirectional flashing lights located in the approach area of a nonprecision runway. Five lights are located on t>[...]

Klyde Morris (04.09.21)

Klyde Is Simply Not A Fan Of The Green New Deal... FMI: www.klydemorris.com>[...]

ANN's Daily Aero-Term (04.10.21): Notices To Airmen Publication

Notices To Airmen Publication A publication issued every 28 days, designed primarily for the pilot, which contains NOTAMs, graphic notices, and other information considered essenti>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2021 Web Development & Design by Pauli Systems, LC