USHST Report Touts Automatic Flight Control Systems in Light Helicopters | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-09.15.25

AirborneNextGen-
09.09.25

Airborne-Unlimited-09.10.25

Airborne-AffordableFlyers-09.11.25

AirborneUnlimited-09.12.25

Thu, Mar 04, 2021

USHST Report Touts Automatic Flight Control Systems in Light Helicopters

'Most Part 27 Aircraft Are Not Equipped With Even The Most Basic Stabilization Systems'

As a result of its comprehensive analysis of fatal helicopter accidents, the U.S. Helicopter Safety Team determined that loss of control while inflight has been a leading factor in accident causes, especially involving light helicopters.

Current light helicopters have flight characteristics that are challenging and demanding of pilot workload. In response, the USHST is moving forward with some first steps to increase safety by encouraging the development and installation of stability augmentation systems and autopilot devices that increase the flight stability of light helicopters.

"If light helicopters operating under visual flight rules could be enhanced to meet some of the instrument flight rule stability requirements, many loss-of-control accidents could be avoided," explains Nick Mayhew, industry co-chair of the U.S. Helicopter Safety Team. "Aircraft stability would help a pilot maintain positive aircraft control during temporary losses of visual cueing or disorientation."

Transport vs. Light Rotorcraft: Automatic flight control systems have been successfully integrated into transport category (Part 29) helicopters for more than 30 years and have proven their effectiveness and safety for flight in low visibility and instrument meteorological conditions.  However, most of these systems are too complex or heavy to integrate into Part 27 helicopters, particularly single-engine models.  Consequently, these smaller rotorcraft lack the operational capability and inherent safety that autopilot systems provide. This restricts such aircraft from operating under instrument flight rules and results in more frequent flights under VFR conditions in the midst of poor visibility and low ceilings. 

Since most Part 27 aircraft are not equipped with even the most basic stabilization systems, they remain more susceptible to loss of control. This could occur when operations are conducted under marginal visual flight rules, when a pilot encounters unintended flight into instrument meteorological conditions or when a pilot becomes spatially disoriented.

New Pathway: In response to this situation, the USHST is presenting a new Recommended Practices document, "Automatic Flight Control Systems in Light Helicopters," (https://ushst.org/loss-of-control/). It provides wide-ranging information about automatic flight control functionality and performance, including:

  • Stability Augmentation
  • Auto-Land
  • Basic Coupled Modes and IFR Coupled Modes
  • Hover-Assist
  • Envelope Protection
  • Automatic Hover Departure
  • Level or Save Me Mode
  • Autorotation Assistance

New Tech: In addition, the paper offers an extensive look at the current and new stability augmentation and autopilot technology, including:

  • Systems currently offered by rotorcraft manufacturers
  • Systems offered by outside 3rd party vendors

Integration of UAS and eVTOL stabilization technology and their safety enhancing features such as:

  • Self-Leveling in Flight or at Hover,
  • Altitude Hold,
  • Automatic Roll and Yaw Control,
  • Omnidirectional Collision Avoidance, etc.

"With the increasing maturity of existing technology and the emergence of new technologies commonly used beyond the aerospace industry," adds Mayhew, "it may be possible to find automatic flight control system solutions that achieve sufficient stability and reliability through low-cost/low-weight systems. Working together, we can find these solutions and enhance safety."

FMI: www.USHST.org, www.IHSF.aero

Advertisement

More News

NTSB Final Report: Evektor-Aerotechnik A S Harmony LSA

Improper Installation Of The Fuel Line That Connected The Fuel Pump To The Four-Way Distributor Analysis: The airplane was on the final leg of a flight to reposition it to its home>[...]

ANN's Daily Aero-Term (09.15.25): Decision Altitude (DA)

Decision Altitude (DA) A specified altitude (mean sea level (MSL)) on an instrument approach procedure (ILS, GLS, vertically guided RNAV) at which the pilot must decide whether to >[...]

Aero-News: Quote of the Day (09.15.25)

“With the arrival of the second B-21 Raider, our flight test campaign gains substantial momentum. We can now expedite critical evaluations of mission systems and weapons capa>[...]

Airborne 09.12.25: Bristell Cert, Jetson ONE Delivery, GAMA Sales Report

Also: Potential Mars Biosignature, Boeing August Deliveries, JetBlue Retires Final E190, Av Safety Awareness Czech plane maker Bristell was awarded its first FAA Type Certification>[...]

Airborne 09.10.25: 1000 Hr B29 Pilot, Airplane Pile-Up, Haitian Restrictions

Also: Commercial A/C Certification, GMR Adds More Bell 429s, Helo Denial, John “Lucky” Luckadoo Flies West CAF’s Col. Mark Novak has accumulated more than 1,000 f>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2025 Web Development & Design by Pauli Systems, LC