NASA Tests Composite Cryogenic Fuel Tank | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Most Recent Daily Airborne

Airborne On ANN

Airborne On YouTube/Hi-Def/Mac Friendly

Monday

Airborne 01.26.15

Airborne 01.26.15

Tuesday

Airborne 01.27.15

Airborne 01.27.15

Wednesday

Airborne 01.28.15

Airborne 01.28.15

Thursday

Airborne 01.22.15

Airborne 01.22.15

Friday

Airborne 01.23.15

Airborne 01.23.15

Thu, Jul 04, 2013

NASA Tests Composite Cryogenic Fuel Tank

Change To New Tanks Could Dramatically Increase Spacecraft Performance

NASA recently completed a major space technology development milestone by successfully testing a pressurized, large cryogenic propellant tank made of composite materials.

Cryogenic propellants are gasses chilled to subfreezing temperatures and condensed to form highly combustible liquids, providing high-energy propulsion solutions critical to future, long-term human exploration missions beyond low-Earth orbit. Cryogenic propellants, such as liquid oxygen and liquid hydrogen, have been traditionally used to provide the enormous thrust needed for large rockets and NASA's space shuttle.

In the past, propellant tanks have been fabricated out of metals. The almost 8 foot-diameter composite tank tested at NASA's Marshall Space Flight Center in Huntsville, AL is considered "game changing" because composite tanks may significantly reduce the cost and weight for launch vehicles and other space missions.

"These successful tests mark an important milestone on the path to demonstrating the composite cryogenic tanks needed to accomplish our next generation of deep space missions," said Michael Gazarik, NASA's associate administrator for space technology at NASA Headquarters in Washington. "This investment in game changing space technology will help enable NASA's exploration of deep space while directly benefiting American industrial capability in the manufacturing and use of composites."

Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. A potential initial target application for the composite technology is an upgrade to the upper stage of NASA's Space Launch System heavy-lift rocket.

Built by Boeing at their Tukwila, WA facility, the tank arrived at NASA in late 2012. Engineers insulated and inspected the tank, then put it through a series of pressurized tests to measure its ability to contain liquid hydrogen at extremely cold temperatures. The tank was cooled down to -423 degrees Fahrenheit and underwent 20 pressure cycles as engineers changed the pressure up to 135 psi. "This testing experience with the smaller tank is helping us perfect manufacturing and test plans for a much larger tank," said John Vickers, the cryogenic tank project manager at Marshall. "The 18 foot tank will be one of the largest composite propellant tanks ever built and will incorporate design features and manufacturing processes applicable to a 27.5 foot tank, the size of metal tanks found in today's large launch vehicles."

The NASA and Boeing team are in the process of manufacturing the 18 foot-diameter composite tank that also will be tested at Marshall next year. "The tank manufacturing process represents a number of industry breakthroughs, including automated fiber placement of oven-cured materials, fiber placement of an all-composite tank wall design that is leak-tight and a tooling approach that eliminates heavy-joints," said Dan Rivera, the Boeing cryogenic tank program manager at Marshall.

Composite tank joints, especially bolted joints, have been a particularly troubling area prone to leaks in the past. Boeing and its partner, Janicki Industries of Sedro-Woolley, WA developed novel tooling to eliminate the need for heavy joints. "Boeing has experience building large composite structures, and Marshall has the facilities and experience to test large tanks," explained John Fikes, the cryogenic tank deputy project manager at Marshall. "It has been a team effort, with Boeing working with NASA to monitor the tests and gather data to move forward and build even larger, higher performing tanks."

NASA's cryogenic storage tank research is part of the agency's Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA's future missions.

(Composite tank image captured from NASA YouTube video.)

FMI: NASA Video, www.nasa.gov/spacetech

Advertisement

More News

Airborne 01.27.15: USCG Rescue!, Two Eagles Over Pacific, UAV v White House

Also: Hartzell/Red Bull, GA Coalition, Aero-Calendar, Commemorative Air Force, Sarah Brightman To ISS, Hot Air Balloon Endurance Record The pilot of a single engine Cirrus SR22 air>[...]

Pipistrel Updates WattsUp Program

Gives Inside-The-Cockpit Look At The Prototype Electric Trainer Pipistrel on Monday released a video showing an inside-the-cockpit view of their new WattsUp electric trainer ... a >[...]

AD: Airbus Airplanes

AD NUMBER: 2014-26-08 PRODUCT: All Airbus Model A330-200, -200F, and -300 series airplanes.>[...]

ANN's Daily Aero-Linx (01.28.15)

The Google Lunar XPRIZE The Google Lunar XPRIZE consists of $30 million in prizes designed to inspire pioneers to do robotic space transport on a budget. Teams from around the worl>[...]

ANN's Daily Aero-Term (01.28.15): National Route Program (NRP)

A set of rules and procedures designed to increase the flexibility of user flight planning within published guidelines.>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2015 Web Development & Design by Pauli Systems, LC