High-Tech Whistle Could Mean Better GPS | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Sun, Feb 13, 2005

High-Tech Whistle Could Mean Better GPS

Physicists' Experiment With Helium-4 May Lead To Better Gyroscopes In Satellites

It was music to the ears of physicists at the University of California, Berkeley, when they forced liquid helium-4 through thousands of tiny holes and heard a whistling sound.

Why the big fuss about an odd sound?  It seems this breakthrough might eventually lead to enhanced earthquake studies and more accurate navigation systems, including the Global Positioning System (GPS).

It all starts with one slippery liquid helium-4. Ultra-cold helium-4 becomes a superfluid, meaning it flows without friction. The scientists squashed it through an array of apertures 1,000 times smaller than the width of a human hair.  The liquid whooshed faster and faster, until it reached a critical velocity. At that point, in a strange phenomenon, a microscopic quantum whirlpool dashed across each aperture, carrying away some of the helium-4's flow energy. This abruptly slowed the flow.  The fluid repeatedly sped up and slowed down, creating vibrations that produced a whistling sound going from high to low.

A recording of the sound, called a quantum whistle, is available online at the FMI link below.  "This whistle caught us by surprise," said UC Berkeley physics professor Dr. Richard Packard.  "It turns out a single aperture will not make the whistle, because of random speed fluctuations. Our experiment shows all the flows through the holes are acting together, coherently, producing the whistle. We suspect it's like hearing thousands of crickets chirping in unison on a summer night."

Packard said this new phenomenon might lead to improved whistling superfluid navigation gyroscopes that detect extremely small rotational motion. As their motion changes, the whistle's volume would change. This would be especially useful on submarines or airplanes in regions where GPS signals are unavailable.

The GPS navigation system relies on knowing the state of Earth's rotation. Because weather and other factors affect Earth's rotation, the GPS system needs constant updating for accuracy. GPS gets its Earth rotation data from an array of radio telescopes distributed around the world. A very sensitive rotation sensor might complement the existing telescope array, providing data quickly and inexpensively.

Superfluid gyroscopes are devices that detect very small rotational motion. They use a specially-shaped, superfluid-filled vessel containing two aperture arrays; when the vessel rotates, the sound of the quantum whistle changes. This provides a telltale clue and allows for sensitive measures of the movements.

"This phenomenon may also permit scientists to develop very sensitive rotation sensors to measure small surface twisting signals created when an earthquake's vibrations travel through irregularities in the Earth's crust," Packard said.  "In fact, we can take this concept even further. If seismologists can measure rotation signals from seismic activity on Mars, they might learn a lot about martian structure."

Packard and his colleagues have a history of hearing whistles while they work. Their experiments in 1997 and 2001, using liquid helium-3, produced a whistle. But the temperatures needed in those experiments were extremely low, just a few thousandths of a degree above absolute zero, which is almost one million times colder than average room temperature. Very few people are trained to work with such ultra-cold technology, which limits its potential applications.

Packard and graduate student Emile Hoskinson were especially excited because this latest phenomenon occurs at a relatively high temperature of 2 Kelvin, which is 2,000 times warmer than the previous helium-3 studies. This might make the technology available to more users with off-the-shelf cryocoolers.

This research was conducted under a grant from NASA and the National Science Foundation. The findings appeared in the January 27 issue of Nature. JPL, a division of the California Institute of Technology, Pasadena, Calif., manages the Quantum Technology in Life Support and Habitation Program for NASA's Exploration Systems Mission Directorate.

FMI: www.nasa.gov/vision/earth/technologies/whistle.html, www.physics.berkeley.edu/research/packard

Advertisement

More News

Sierra Space Repositions Dream Chaser for First Mission

With Testing Soon Complete, Launch Preparations Begin in Earnest Sierra Space's Dream Chaser has been put through the wringer at NASA's Glenn Armstrong Test Facility in Ohio, but w>[...]

ANN's Daily Aero-Term (05.10.24): Takeoff Roll

Takeoff Roll The process whereby an aircraft is aligned with the runway centerline and the aircraft is moving with the intent to take off. For helicopters, this pertains to the act>[...]

Aero-News: Quote of the Day (05.10.24)

“We’re proud of the hard work that went into receiving this validation, and it will be a welcome relief to our customers in the European Union. We couldn’t be mor>[...]

Aero-News: Quote of the Day (05.11.24)

"Aircraft Spruce is pleased to announce the acquisition of the parts distribution operations of Wag-Aero. Wag-Aero was founded in the 1960’s by Dick and Bobbie Wagner in the >[...]

ANN's Daily Aero-Term (05.11.24): IDENT Feature

IDENT Feature The special feature in the Air Traffic Control Radar Beacon System (ATCRBS) equipment. It is used to immediately distinguish one displayed beacon target from other be>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC