Orbital ATK Successfully Tests Hypersonic Engine Combustor | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-06.03.24

Airborne-NextGen-06.04.24

Airborne-Unlimited-06.05.24 Airborne-AffordableFlyers-06.06.24

Airborne-Unlimited-06.07.24

Tue, Jan 19, 2016

Orbital ATK Successfully Tests Hypersonic Engine Combustor

3D-Printed Unit Demonstrates One Of Longest Duration Propulsion Wind Tunnel Tests On Record

Orbital ATK has successfully tested a 3D-printed hypersonic engine combustor at NASA Langley Research Center. The combustor, produced through an additive manufacturing process known as powder bed fusion (PBF), was subjected to a variety of high-temperature hypersonic flight conditions over the course of 20 days, including one of the longest duration propulsion wind tunnel tests ever recorded for a unit of this kind. Analysis confirms the unit met or exceeded all of the test requirements.

One of the most challenging parts of the propulsion system, a scramjet combustor, houses and maintains stable combustion within an extremely volatile environment. The tests were, in part, to ensure that the PBF-produced part would be robust enough to meet mission objectives.
 
“Additive manufacturing opens up new possibilities for our designers and engineers,” said Pat Nolan, Vice President and General Manager of Orbital ATK’s Missile Products division of the Defense Systems Group. “This combustor is a great example of a component that was impossible to build just a few years ago. This successful test will encourage our engineers to continue to explore new designs and use these innovative tools to lower costs and decrease manufacturing time.”
 
The test at Langley was an important opportunity to challenge Orbital ATK’s new combustor design, made possible only through the additive manufacturing process. Complex geometries and assemblies that once required multiple components can be simplified to a single, more cost-effective assembly. However, since the components are built one layer at a time, it is now possible to design features and integrated components that could not be easily cast or otherwise machined.
 
PBF is one of several manufacturing methods currently being explored by Orbital ATK and its technology partners. Final assembly of the test combustor was completed at the company’s facilities in Ronkonkoma, New York, and Allegany Ballistics Laboratory in Rocket Center, West Virginia.
 
Orbital ATK’s Defense Systems Group is an industry leader in providing innovative and affordable precision and strike weapons, advanced propulsion and hypersonics, missile components across air-, sea- and land-based systems, ammunition and related energetic products.

(Source: Orbital ATK news release)

FMI: www.orbitalatk.com

Advertisement

More News

ANN's Daily Aero-Term (06.10.24): Known Traffic

Known Traffic With respect to ATC clearances, means aircraft whose altitude, position, and intentions are known to ATC.>[...]

ANN's Daily Aero-Linx (06.10.24)

Aero Linx: Aviation Suppliers Association (ASA) Established February 25, 1993, the Aviation Suppliers Association (ASA), based in Washington, D.C., is a not-for-profit association,>[...]

ANN's Daily Aero-Term (06.11.24): Abeam

Abeam An aircraft is “abeam” a fix, point, or object when that fix, point, or object is approximately 90 degrees to the right or left of the aircraft track. Abeam indic>[...]

ANN's Daily Aero-Linx (06.11.24)

Aero Linx: The Air Charter Safety Alliance The group, called the Air Charter Safety Alliance, will raise awareness of illegal charter flights among potential customers, charter bro>[...]

Aero-News: Quote of the Day (06.11.24)

“For months, ALPA has been sounding the alarm on the ongoing efforts by some aircraft manufacturers to remove pilots from the flight deck and replace them with automation. To>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC