Additive Manufacturing Cuts Satellite Production Time | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sun, Sep 14, 2014

Additive Manufacturing Cuts Satellite Production Time

Airbus Defense And Space Employing The Technique

The latest generation of satellites from Airbus Defense and Space contain special clamps that join the body of the satellite to the feed and sub-reflector assembly at the top end. Clamps manufactured by conventional production methods did not meet the expectations of the Spanish corporate division. The engineers thus chose the additive-metal-manufacturing technique from EOS for production. This process, where metal powder coats are fused by laser, also allowed an easy adaptation of the component's design.

The components now survive the set range of 330°C at a force effect of 20 kN permanently and with no problems. What's more, the Spanish aerospace experts could also reduce the production time for the holding clamps during assembly of the feed and sub-reflector unit by five days. Less than a month is now needed to assemble the three holding devices needed for each satellite. The costs savings during production are over 20%. Moreover, the engineers have successfully reduced the weight of the component.

Titanium could still be used as a proven material: it has emerged as a suitable material - as so often in the aerospace industry: apart from its advantages in terms of absolute weight and thermal diffusivity, it also offers an acceptable specific weight. The fixtures therefore hold the components to be mounted safely on the body and, on the other hand, attenuate the extreme variations in temperature in space: these range from -180 to +150°C, so that the strain on the material is correspondingly great.

"The solution has two advantages: firstly, we could optimize the production ourselves," said Otilia Castro Matías from Airbus Defense and Space. "In addition, we were able to improve the design so that the complete work piece can be manufactured in one operation."

(Image provided by Airbus)

FMI: www.airbus.com

Advertisement

More News

ANN's Daily Aero-Term (04.25.24): Airport Rotating Beacon

Airport Rotating Beacon A visual NAVAID operated at many airports. At civil airports, alternating white and green flashes indicate the location of the airport. At military airports>[...]

ANN's Daily Aero-Linx (04.25.24)

Aero Linx: Fly for the Culture Fly For the Culture, Inc. is a 501(c)(3) non-profit organization that serves young people interested in pursuing professions in the aviation industry>[...]

Klyde Morris (04.22.24)

Klyde Is Having Some Issues Comprehending The Fed's Priorities FMI: www.klydemorris.com>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC