NASA's Ion Engine Records No Problems After 1264 Days | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.14.24

Airborne-Unlimited-05.15.24 Airborne-AffordableFlyers-05.16.24

Airborne-Unlimited-05.17.24

Fri, Aug 01, 2003

NASA's Ion Engine Records No Problems After 1264 Days

New Propulsion Method For Deep Space?

It's the kind of long-term, trouble-free engine performance that every vehicle operator would like to see, achieved by an ion engine running for a record 30,352 hours at NASA's Jet Propulsion Laboratory in Pasadena (CA).

The engine is a spare of the Deep Space 1 ion engine used during a successful technology demonstration mission that featured a bonus visit to comet Borrelly. It had a design life of 8,000 hours, but researchers kept it running for almost 5 years -- from Oct. 5, 1998, to June 26, 2003 -- in a rare opportunity to fully observe its performance and wear at different power levels throughout the test. This information is vital to future missions that will use ion propulsion, as well as to current research efforts to develop improved ion thrusters.

"Finding new means to explore our solar system -- rapidly, safely and with the highest possible return on investment -- is a key NASA mission," said Colleen Hartman, head of Solar System Exploration at NASA Headquarters, Washington (DC). "Robust in-space flight technologies such as ion propulsion are critical to this effort and will pioneer a new generation of discovery among our neighboring worlds."

While the engine had not yet reached the end of its life, the decision was made to terminate the test because near-term NASA missions using ion propulsion needed analysis data that required inspection of the different engine components. In particular, the inspection of the thruster's discharge chamber, where xenon gas is ionized, is critical for mission designers of the upcoming Dawn mission. Dawn, part of NASA's Discovery Program, will be launched in 2006 to orbit Vesta and Ceres, two of the largest asteroids in the solar system.

"The chamber was in good condition," said John Brophy, JPL's project element manager for the Dawn ion propulsion system. "Most of the components showed wear, but nothing that would have caused near-term failure."

Marc Rayman, former Deep Space 1 project manager, said, "There are many exciting missions into the solar system that would be unaffordable or truly impossible without ion propulsion. This remarkable test shows that the thrusters have the staying power for long duration missions."

Ion engines use xenon, the same gas used in photo flash tubes, plasma televisions and some automobile headlights. Deep Space 1 featured the first use of an ion engine as the primary method of propulsion on a NASA spacecraft. That engine was operated for 16,265 hours, the record for operating any propulsion system in space. Ion propulsion systems can be very lightweight, because they can run on just a few grams of xenon gas a day. While the thrust exerted by the engine is quite gentle, its fuel efficiency can reduce trip times and lower launch vehicle costs. This makes it an attractive propulsion system choice for future deep space missions.

"The engine remained under vacuum for the entire test, setting a new record in ion engine endurance testing, a true testament to the tremendous effort and skill of the entire team," said Anita Sengupta, staff engineer in JPL's Advanced Propulsion Technology Group. "This unique scientific opportunity benefits current and potential programs."

"The dedicated work of NASA's Solar Electric Technology Application Readiness test team, led by JPL, continues to exemplify a commitment to engineering excellence," said Les Johnson, who leads the In-Space Propulsion Program at NASA's Marshall Space Flight Center, Huntsville, Ala. "This work, along with significant contributions from NASA's Glenn Research Center in Cleveland, will take NASA's space exploration to the next level."

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (05.17.24): Very High Frequency

Very High Frequency The frequency band between 30 and 300 MHz. Portions of this band, 108 to 118 MHz, are used for certain NAVAIDs; 118 to 136 MHz are used for civil air/ground voi>[...]

ANN's Daily Aero-Linx (05.17.24)

Aero Linx: Aviation Suppliers Association Established February 25, 1993, the Aviation Suppliers Association (ASA), based in Washington, D.C., is a not-for-profit association, repre>[...]

ANN FAQ: Submit a News Story!

Have A Story That NEEDS To Be Featured On Aero-News? Here’s How To Submit A Story To Our Team Some of the greatest new stories ANN has ever covered have been submitted by our>[...]

Classic Aero-TV: ANN Visits Wings Over The Rockies Exploration Of Flight

From 2021 (YouTube Version): Colorado Campus Offers aVariety Of Aerospace Entertainment And Education Wings over the Rockies Exploration of Flight is the second location for the Wi>[...]

Airborne Affordable Flyers 05.16.24: PRA Runway, Wag-Aero Sold, Young Eagles

Also: Paramotor Champ's, Electric Ultralight, ICON BK Update, Burt Rutan at Oshkosh! The Popular Rotorcraft Association is reaching out for help in rebuilding their private runway >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC