NASA Finds Earth's Moon Hit By Surprising Number Of Meteoroids | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sun, Oct 23, 2016

NASA Finds Earth's Moon Hit By Surprising Number Of Meteoroids

Could Have Implications For Long-Term Equipment Or Settlement That May One Day Be On The Moon

The moon experiences a heavier bombardment by small meteoroids than models had predicted, according to new observations from NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft. The result implies that lunar surface features thought to be young because they have relatively few impact craters may be even younger than previous estimates.

The finding also implies that equipment placed on the moon for long durations -- such as a lunar base -- may have to be made sturdier. While a direct hit from a meteoroid is still unlikely, a more intense rain of secondary debris thrown out by nearby impacts may pose a risk to surface assets.

"Before the launch of the Lunar Reconnaissance Orbiter, it was thought that churning of the lunar regolith (soil) from meteoroid impacts typically took millions of years to overturn the surface down to 2 centimeters (about 0.8 inches)," said Emerson Speyerer of Arizona State University, Tempe. "New images from the Lunar Reconnaissance Orbiter Camera (LROC) are revealing small surface changes that are transforming the surface much faster than previously thought." Speyerer is lead author of a paper about this research in the Oct. 13 issue of the journal Nature.

"The newly determined churning rate means that the Apollo astronaut tracks will be gone in tens of thousands of years rather than millions," said Mark Robinson of Arizona State University, a co-author.

LRO went into lunar orbit in June of 2009 and has acquired an extensive set of high-resolution images of the surface, including pairs of images of the same areas taken at different times. Using these before-and-after images (temporal pairs) acquired by the LROC Narrow Angle Camera (NAC), the team identified over 200 impact craters that formed during the LRO mission, ranging in size from about 10 to 140 feet (approximately 3 to 43 meters) in diameter.

Since impact craters accumulate over time, a heavily cratered surface is older than a region with fewer craters. Knowing the number of craters that form each year is important when estimating absolute ages of the youngest regions. By analyzing the number, size distribution, and the time between each NAC temporal pair, the team estimated the contemporary cratering rate on the moon. During the search, they identified about 30 percent more new craters than anticipated by previous cratering models.

"With this potentially higher impact rate, features with young model ages derived using crater counts and the standard rate may in fact be even younger than previously thought," said Speyerer. "However, to be certain, we need several more years of observations and new crater discoveries."

In addition to discovering new impact craters, the team observed over 47,000 small surface changes, which they call splotches. They are most likely caused by small impacts, according to Speyerer. There are dense clusters of these splotches around new impact sites suggesting that many splotches may be secondary surface changes caused by material thrown out from the primary impact event.

The team estimated their accumulation over time and from measuring their size they inferred how deeply each splotch dug up the surface and thus how long it takes to effectively churn the upper few centimeters (approximately an inch) of the regolith. The team found that 99 percent of the surface would be overturned by splotch formation after about 81,000 years. This rate is over 100 times faster than previous models that considered overturn from micrometeorite impacts alone, and ignored the effects of secondary impacts.

"The increased churning rate will be important information for future designers of moon bases, said Speyerer. "Surface assets will have to be designed to withstand impacts from small particles moving at up to 500 meters per second (about 1,600 feet per second or 1,100 miles per hour)."

The team also found that the new impact craters are surrounded by complex reflectance patterns related to material ejected during crater formation. Many of the larger impact craters -- those greater than 10 meters in diameter -- exhibit up to four distinct bright or dark reflectance zones.

The research was funded by the LRO project. The Lunar Reconnaissance Orbiter Camera was developed at Arizona State University in Tempe. LRO is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland, as a project under NASA's Discovery Program. The Discovery Program is managed by NASA's Marshall Spaceflight Center in Huntsville, Alabama, for the Science Mission Directorate at NASA Headquarters in Washington.

(Source: NASA news release. Images provided by NASA)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC